
Guide for Writing Techncial
Documentation

Copernicus Land Monitoring Service

European Environment Agency (EEA)

2025-06-23

Author: European Environment Agency (EEA)

Date: 2025-06-23

Version: 0.6

Index

1. Introduction..3
2. Required Software..4

2.1 Git.. 4
2.2 RStudio..4
2.3 Quarto...4
2.4 Pandoc...5
2.5 A Command Line Tool..5

3. Adding Documentation to Your Project...5
3.1 Link the Base Repository...5
3.2 Add the DOCS/ Folder to Your Project..5
3.3 Set Up Git Shortcuts..5
3.4 Available Git Aliases..6

4. Folder and File Structure..6
4.0.1 What You Should Do..6
4.0.2 Previewing Your Documentation...7

5. Basic Markdown Syntax..7
5.1 Line Breaks and New Lines..7

5.1.1 Soft Line Break (Just Pressing Enter)...7
5.1.2 Hard Line Break (Using at End of Line)...8
5.1.3 Paragraph Break (Double Enter)..8
5.1.4 Summary...8

5.2 Headings...9
5.3 Paragraphs and Line Breaks..9
5.4 Bold and Italic Text..9
5.5 Lists...9

5.5.1 Bullet (Unordered) List..9
5.5.2 Numbered (Ordered) List...9
5.5.3 Paragraphs Within List Items...10
5.5.4 Single-Item List Rendering Issue...10

5.6 Links and Images...10
5.6.1 Link...10
5.6.2 Image..10

5.7 Code Blocks and Inline Code...10
5.7.1 Inline code...10
5.7.2 Code block...11

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 1

5.8 Tables..11
5.8.1 Simple (Pipe) Table...11
5.8.2 HTML-style Table (for advanced layouts)..11

5.9 Figures (with captions and layout)..13
5.10 Showing Images in Multiple Columns or Rows...13

5.10.1 Without Captions...13
5.10.2 With Captions..14

5.11 Page Breaks for .docx/.pdf Outputs...14
5.12 Equations...14

5.12.1 Inline Equations...14
5.12.2 Display Equations..14

5.13 Diagrams...15
5.13.1 Mermaid example..15
5.13.2 Dot example..15

5.14 Footnotes..16
5.15 Notebook Output Embeds...16

6. Creating New Documentation...17
6.1 Step 1: Start a New File...17

6.1.1 Option 1: Use a Template..17
6.1.2 Option 2: Create from scratch...17

6.2 Step 2: Understand and Use the Template..17
6.3 Step 3: Add or Adjust the YAML Header..17

6.3.1 Field Descriptions:...18
7. Importance of File Naming...18
8. Ready-Made QMD Templates..19

8.1 ATBD Template..19
8.2 PUM Template...19
8.3 How to Use the Templates...20

9. Using Pandoc to Convert DOCX to QMD...20
9.1 What is Pandoc?..20
9.2 When and How to Use It..20
9.3 Basic Usage Example..21

9.3.1 What this command does:...21
9.4 Where Are Media Files Stored?..21

9.4.1 Changing the Media Folder Name...21
9.5 Next Steps...21

10. Default Styles and Options...22
10.1 Shared Styling Configuration...22

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 2

10.2 Theme...22
10.3 Table of Contents..22
10.4 Customizing Per-Document Settings...22

11. Automatic Keywords Generation..23
11.1 How It Works...23
11.2 What You Should Do..23

12. Using RStudio with Quarto..23
12.1 Opening Your Project...23
12.2 Editing QMD Files..23
12.3 Managing Media Files..24

13. Rendering Documentation..24
13.1 Render to HTML...24
13.2 Render to PDF via DOCX and LibreOffice...25

13.2.1 Preview with DOCX Instead of PDF..26
13.3 Output Location...26

13.3.1 About the _quarto.yaml File..27
13.3.2 Recommended Setup for Efficient Editing...27
13.3.3 Rendering the Full Project...27

14. Problems and Solutions..27
14.1 Text Styling in DOCX...27
14.2 Figure and Image Numbering..28
14.3 Table Styling and Formatting..28

15. Document Review and Git Workflow...29
15.1 Pushing Changes to Git...29
15.2 Reviewing Documents...29
15.3 Releasing Official Documentation..30

1. Introduction
This manual guides users through creating technical documentation for the
Copernicus Land Monitoring Service using Quarto. Quarto simplifies the process of
writing professional documents in Markdown, and converting them into HTML and
PDF for nice publishing. The manual covers basic Markdown writing, document
rendering, as well a the review, and publication process of technical CLMS
documents. It also describes the project folder structure, template usage, and
common mistakes to avoid.

 Note

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 3

https://www.markdownguide.org/
https://quarto.org/

You don’t need to be a programmer nor an expert to use Quarto. If you’ve ever
written a document in Microsoft Word, you’ll be able to use Quarto with a bit of
practice.

2. Required Software
Before you can start writing documentation with Quarto, you’ll need to install a few
tools. Most of them are quick to set up, and this chapter will guide you through
what’s needed and why.
These tools help with writing, saving versions of your documents, and converting
them into professional formats like HTML or PDF.

2.1 Git
Git keeps track of your document changes over time. It also makes it easy to work
with others without accidentally overwriting each other’s work. You don’t have to
learn Git right away- but having it installed is important.

 Windows users: Download Git for Windows.
 macOS users: Git may already be installed. If not, you can install it using the Terminal.
 Linux users: Use your package manager, e.g., sudo apt install git.

2.2 RStudio
RStudio is a user-friendly editor where you’ll write and preview your documentation.
It works great with Quarto and supports rendering documents into different formats.

 Download it from rstudio.com.

 Note

Even though RStudio is made for programming in R, don’t worry—you’ll just use it
as your writing tool for Quarto.

2.3 Quarto
Quarto is the main tool you’ll be using to write and convert your documents into
formats like HTML or PDF. It works together with RStudio and Pandoc.
Download it from quarto.org
After installation, Quarto works quietly in the background when you click “Render”
in RStudio.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 4

https://quarto.org/docs/get-started/
https://posit.co/download/rstudio-desktop/
https://git-scm.com/download/win

2.4 Pandoc
Pandoc is the tool that turns your Markdown text into beautiful documents. It often
comes bundled with RStudio or Quarto. If you’re not sure whether it’s installed,
don’t worry—Quarto will usually handle this for you behind the scenes.

2.5 A Command Line Tool
Depending on your system, you’ll also need a basic command line tool to run a few
simple commands:

 Windows: Use PowerShell, which is already installed on most Windows computers.
 macOS or Linux: Use the built-in Terminal, which gives you access to bash (the default

command shell on most systems).

 Tip

You’ll only need the command line for a few things, like starting a Quarto preview
or checking if software is installed. We’ll walk you through these steps when the
time comes.

3. Adding Documentation to Your Project
To integrate the documentation into your project, follow the steps below. Full
instructions are available at: https://github.com/eea/CLMS_documents_base

3.1 Link the Base Repository
Add the base documentation repository as a remote:
git remote add clms-docs-base git@github.com:eea/CLMS_documents_base.git

3.2 Add the DOCS/ Folder to Your Project
Use the following command to pull in the documentation as a subtree:
git subtree add --prefix=DOCS clms-docs-base main --squash

After running this, your project will include a DOCS/ directory containing all necessary
documentation resources.

3.3 Set Up Git Shortcuts
To simplify documentation management, run the appropriate setup script based on
your operating system:
On macOS or Linux:
./DOCS/_meta/scripts/linux/setup-docs-aliases.sh

On Windows (PowerShell):
./DOCS/_meta/scripts/win/setup-docs-aliases.ps1

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 5

https://github.com/eea/CLMS_documents_base

This will configure convenient Git aliases for working with the documentation.

3.4 Available Git Aliases
Once the setup is complete, you’ll have access to these useful Git commands:

 git docs-update: Syncs your local documentation with updates from the base repository.
 git docs-publish: Pushes your documentation changes to the repository.
 git docs-preview: Generates a local preview of your documentation.

These shortcuts make it easy to keep your documentation up-to-date, share
changes, and review your work.

4. Folder and File Structure
This section explains how your documentation project is organized and where to put
your files. The structure ensures consistency, simplifies maintenance, and allows
documents to be rendered correctly in both your local project and the central
Technical Library.
Below is the standard folder layout you’ll see at the root of the DOCS/ directory in
your project:
DOCS/
├── _meta/ # Scripts, config, and metadata (do not edit)
├── includes/ # Quarto include files (do not edit)
├── templates/ # Document templates (do not edit)
├── theme/ # Styling definitions (do not edit)
├── _quarto.yml # Project-wide Quarto config
├── CLMS_your-product-one_ATBD.qmd
├── CLMS_your-product-one_ATBD-media/
├── CLMS_your-product-two_PUM.qmd
├── CLMS_your-product-two_PUM-media/
├── ...
└── CLMS_your-product-last_PUM.qmd

4.0.1 What You Should Do
 You simply need to add your own .qmd files in the DOCS/ directory.
 If your document uses charts, screenshots, or diagrams, create a media

folder with the same base name as your document and a -media suffix.
 Example:
 DOCS/

├── CLMS_your-product-one_ATBD.qmd
└── CLMS_your-product-one_ATBD-media/
 └── figure1.png

 Do not modify the following folders: _meta/, includes/, templates/, theme/.
These are managed centrally.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 6

o templates/
This is where you’ll find ready-to-use .qmd templates. There are
templates for two document types:

 ATBD (Algorithm Theoretical Basis Document)

 PUM (Product User Manual)
 When you start a new document, copy the appropriate template from

this directory. This ensures consistency in structure and formatting
across all documents in the Technical Library.

 Styling and rendering will automatically reflect the structure and
appearance defined by the central documentation project.

4.0.2 Previewing Your Documentation
To preview the full rendered documentation from your project, use:
git docs-preview

For more details on previewing and validating, see the final chapter of this manual.

5. Basic Markdown Syntax
 Note

In addition to this guide and the official documentation, you can also explore the
template .qmd files in the templates folder. These files include real examples of
how to structure documents using Markdown and Quarto-specific syntax. They’re
a great reference when you’re not sure how to format something.

Markdown is a simple way to format text using plain characters — no need for
complicated tools or buttons. Quarto uses Markdown to let you write clean, readable
documents that can be turned into HTML or PDF automatically.
This section shows the most useful Markdown elements you’ll need when writing
documentation. If you want to explore more, visit the official Quarto Markdown
guide.

5.1 Line Breaks and New Lines
In Markdown, how you break a line can affect how your text is displayed in the final
document. Quarto follows standard Markdown behavior, so it’s important to
understand the difference between soft and hard line breaks.
5.1.1 Soft Line Break (Just Pressing Enter)
When you press Enter once and start a new line in your text editor, Markdown does
not create a visible line break in the output. Instead, it treats the two lines as part
of the same paragraph.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 7

https://quarto.org/docs/authoring/markdown-basics.html
https://quarto.org/docs/authoring/markdown-basics.html

Example (input):
This is the first line
and this is the second line.

Rendered output:
 This is the first line and this is the second line.
This keeps your Markdown source tidy, but it won’t create new lines unless explicitly
instructed
5.1.2 Hard Line Break (Using at End of Line)
To force a visible line break in Markdown, you must add two spaces at the end of a
line or use a backslash \. Quarto supports both, but using \ is clearer and more
explicit.
This is the first line.\
and this is the second line.

Rendered output:
 This is the first line.
 and this is the second line.
5.1.3 Paragraph Break (Double Enter)
If you press Enter twice (i.e., leave a blank line between two lines), Markdown will
treat the content as two separate paragraphs. This results in a larger vertical space
between the lines in the rendered output.
Example (input):
This is the first paragraph.

This is the second paragraph.

Rendered output:
 This is the first paragraph.
 This is the second paragraph.
This behavior is especially important when structuring readable documentation,
separating ideas, or organizing content clearly.
5.1.4 Summary

 Use Enter for a new line in your editor, but don’t expect a visible line break.
 Use \ at the end of a line when you want to force a line break.
 Use double Enter (i.e., an empty line between paragraphs) to start a new paragraph with

extra spacing.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 8

5.2 Headings
Use the # symbol to create headings and organize your content. More # means a
smaller heading level:
Title (Level 1)
Section (Level 2)
Subsection (Level 3)

5.3 Paragraphs and Line Breaks
Just write text normally to create a paragraph. Leave an empty line between
paragraphs.
To create a line break inside a paragraph, end the line with two spaces:
This is one line.
This is another line.

5.4 Bold and Italic Text
 Italic — use one asterisk or underscore: *italic* or _italic_

 Bold — use two asterisks: **bold**

 Bold and italic — use three asterisks: ***bold and italic***

5.5 Lists
5.5.1 Bullet (Unordered) List
- Item one

- Item two

 - Subitem

5.5.2 Numbered (Ordered) List
1. First step

2. Second step

 1. Sub-step

 Important

Make sure to include a blank line between list items, and ensure they are
correctly indented. This ensures proper rendering in .docx and .pdf outputs.
Without these, list entries may merge, misalign, or render incorrectly.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 9

5.5.3 Paragraphs Within List Items
To include a paragraph or a block of text as part of a list item, indent the paragraph
to match the indentation of the list content. Also, make sure the paragraph follows
the list item without a blank line, or it may break the list.
- This is the list item title.
 This is a paragraph that belongs to the same list item.
 It should be indented to align with the start of "This is a paragraph..."

- Another item
 With its own paragraph block.

5.5.4 Single-Item List Rendering Issue
When a list or sublist contains only one item, it can be incorrectly rendered in .docx
or .pdf formats. In such cases, the item may appear in the wrong font or style.
To fix this, apply a custom style to the single list item. In the provided Word
template, use the style named “NormalLine”.
Here is how to apply it:
- step 1
 - [step 1.1]{custom-style="NormalLine"}\

 Note

 The custom-style attribute ensures the correct formatting.
 Don’t forget to include the backslash () at the end of the line to prevent unwanted spacing

or breaks.

5.6 Links and Images
5.6.1 Link
[Quarto website](https://quarto.org)

5.6.2 Image
Place image files in your media/ folder, and use:
![Alt text](media/image-name.png)

5.7 Code Blocks and Inline Code
5.7.1 Inline code
Use backticks (`) to highlight short code inside a sentence:
Use the `render` button to build your document.

Rendered result:
Use the render button to build your document.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 10

5.7.2 Code block
Use triple backticks for larger code examples:
```python
print("Hello,  world!")
```

Rendered result:
print("Hello, world!")

You can replace python with other languages like bash, r, or json.

5.8 Tables
Tables are a great way to present structured information. Below are two common
ways to create them, along with rendered previews.

 If you like there are several table generators on the internet which can help
you generating markdown or html tables.
5.8.1 Simple (Pipe) Table
Name	Role	Status
Alice	Developer	*Active*
Bob	Reviewer	**Pending**
: Demonstration of pipe table syntax

Rendered result:
Demonstration of pipe table syntax

Name Role Status
Alice Developer Active
Bob Reviewer Pending

Make sure to align columns using | and -.
5.8.2 HTML-style Table (for advanced layouts)
```{=html}
<table  style="border-collapse:  collapse;  width:  100%;  font-size:  14px;">
  <thead  style="background-color:  #2c3e50;  color:  black;">
    <tr>
      <th colspan="3" style="padding: 10px; border: 1px solid #ccc; text-align:
center;">
        Document  Workflow  Overview
      </th>
    </tr>
    <tr>
      <th  style="padding:  8px;  border:  1px  solid  #ccc;">Step</th>
      <th  style="padding:  8px;  border:  1px  solid  #ccc;">Task</th>
      <th  style="padding:  8px;  border:  1px  solid  #ccc;">Details</th>
    </tr>
  </thead>
  <tbody  style="background-color:  #ecf0f1;">

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 11



    <tr>
      <td  style="padding:  8px;  border:  1px  solid  #ccc;">1</td>
      <td style="padding: 8px; border: 1px solid #ccc;">Initialize Project</td>
      <td style="padding: 8px; border: 1px solid #ccc;">Set up folder structure and
copy  base  template</td>
    </tr>
    <tr>
      <td  style="padding:  8px;  border:  1px  solid  #ccc;">2</td>
      <td colspan="2" style="padding: 8px; border: 1px solid #ccc;">Create  and
configure  `.qmd`  file</td>
    </tr>
    <tr>
      <td  style="padding:  8px;  border:  1px  solid  #ccc;">3</td>
      <td  style="padding:  8px;  border:  1px  solid  #ccc;">Write  Content</td>
      <td  style="padding:  8px;  border:  1px  solid  #ccc;">
        Add  sections,  insert  media,  and  apply  styles.<br>
        Use  templates  to  ensure  structure  consistency.
      </td>
    </tr>
    <tr>
      <td  style="padding:  8px;  border:  1px  solid  #ccc;">4</td>
      <td  style="padding:  8px;  border:  1px  solid  #ccc;">Render  Output</td>
      <td  style="padding:  8px;  border:  1px  solid  #ccc;">
        <ul  style="margin:  0;  padding-left:  20px;">
          <li>HTML  for  preview</li>
          <li>DOCX  for  formatting  check</li>
          <li>PDF  via  automation</li>
        </ul>
      </td>
    </tr>
    <tr>
      <td colspan="3" style="padding: 8px; border: 1px solid #ccc; background-color:
#d1ecf1;  text-align:  center;">
        ✅  All  steps  completed  —  document  ready  for  review
      </td>
    </tr>
  </tbody>
</table>

Rendered result:
Document Workflow Overview

Step Task Details
1 Initialize Project Set up folder structure and 

copy base template
2 Create and configure `.qmd` file
3 Write Content Add sections, insert media, 

and apply styles.
Use templates to ensure 
structure consistency.

4 Render Output  HTML for preview
 DOCX for formatting 

check
 PDF via automation

✅ All steps completed — document ready for review

  Warning
 CLMS IT Architecture Principles and Implementation Guidelines

Page | 12



Document Workflow Overview
Step Task Details

Avoid  using  nested  tables (a  table  inside  another  table)  when  writing
documentation intended for DOCX or PDF output. While this might work in HTML,
it often causes serious rendering problems in Word or during PDF conversion —
such as layout breakage, invisible borders, or unreadable formatting.
✅ Instead of nesting:

 Reorganize the content into a simpler layout
 Split one large complex table into two or more smaller tables placed one after another

This  ensures your document remains clean,  readable,  and properly  formatted
across all output formats.

5.9 Figures (with captions and layout)
You can add figures using this special block format:
:::  {.figure}
![A  helpful  diagram](media/diagram.png)
A  short  caption  for  the  figure.
:::

You  can  also  use  layout  options,  like  fig-align="center" or  fig-width="80%" in
advanced  cases.
More: https://quarto.org/docs/authoring/figures.html

5.10 Showing Images in Multiple Columns or Rows
Sometimes you want to display a group of images side by side or in a grid. This is
useful for comparisons or visual overviews. The following approaches work well in
both HTML and DOCX outputs, including when converting to PDF.

5.10.1 Without Captions
You can use a Markdown table to arrange images in multiple columns and rows:
| ![](image1.png){width=120} | ![](image2.png){width=120} | ![](image3.png){width=120}
|
|----------------------------|----------------------------|---------------------------
-|
| ![](image4.png){width=120} | ![](image5.png){width=120} | ![](image6.png){width=120}
|

This creates two rows with three images each. Adjust the width as needed to fit
your layout.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 13

https://quarto.org/docs/authoring/figures.html


5.10.2 With Captions
To add captions under each image, simply include a row of text below each row of
images:
| ![](img1.png){width=120}  | ![](img2.png){width=120}  | ![](img3.png){width=120}  |
|:------------------------:|:------------------------:|:------------------------:|
| Caption 1               | Caption 2               | Caption 3               |
| ![](img4.png){width=120}  | ![](img5.png){width=120}  | ![](img6.png){width=120}  |
| Caption 4               | Caption 5               | Caption 6               |

This method keeps captions aligned with each image, and works across all output
formats.

⚠   Note: Tables  used for  captions  will  show borders  in  DOCX and PDF
outputs. Removing them requires custom styles in a reference DOCX.

5.11 Page Breaks for .docx/.pdf Outputs
In Quarto, using section breaks (like - - -) may not reliably produce a page break
in .docx or .pdf outputs. Instead, to insert a page break that appears only in those
formats, use the following block: that appears only in .docx or .pdf outputs, use the
following block:
:::  {.content-visible  format=docx}
```{=openxml}
<w:p><w:r><w:br w:type="page"/></w:r></w:p>
:::

This will ensure that the page break is included in the rendered Word or PDF
document, but not visible in HTML or other formats.

5.12 Equations
Quarto supports mathematical equations using LaTeX-style syntax. You can add
inline equations or display equations as blocks.
5.12.1 Inline Equations
Use single dollar signs $...$ for inline math:
The formula for the area is $A = \pi r^2$.

Rendered result:
The formula for the area is .
5.12.2 Display Equations
Use double dollar signs $$...$$ to show a larger, centered equation block:
$$
E = mc^2
$$

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 14

Rendered result:

You can use most standard LaTeX math symbols and operators.
For more examples, check the Quarto math documentation.

5.13 Diagrams
Quarto supports diagrams using mermaid and dot. Just use a code block like this:
5.13.1 Mermaid example
```{mermaid}
flowchart  LR
  A[Hard  edge]  -->  B(Round  edge)
  B  -->  C{Decision}
  C  -->  D[Result  one]
  C  -->  E[Result  two]
```

5.13.2 Dot example
```{dot}
digraph DocumentationWorkflow {
  node [shape=box,  style=rounded]

  Start -> "Create  .qmd  File"
  "Create  .qmd  File" -> "Write  Content"
  "Write  Content" -> "Render  to  HTML"
  "Write  Content" -> "Render  to  DOCX"
  "Render  to  DOCX" -> "Convert  to  PDF"
  "Render  to  HTML" -> Review
  "Convert  to  PDF" -> Review
  Review -> "Push  to  GitHub"
  "Push  to  GitHub" -> Done

  Done [shape=ellipse,  style=filled,  fillcolor=lightgrey]
}
```

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 15

https://quarto.org/docs/authoring/markdown-basics.html#equations

More: https://quarto.org/docs/authoring/diagrams.html

5.14 Footnotes
You can add footnotes to explain details without interrupting the main text. Use [^1]
where you want the footnote, and define the footnote at the bottom:
This is a sentence with a footnote.[^1]

[^1]: This is the footnote content.

Rendered result:
This is a sentence with a footnote.1

5.15 Notebook Output Embeds
If you’re working with code notebooks (like Jupyter or R Markdown), you can include
outputs such as plots or tables directly in the document. Quarto will automatically
embed them after the code block.
More: https://quarto.org/docs/authoring/notebook-embed.html

1 This is the footnote content.
 CLMS IT Architecture Principles and Implementation Guidelines

Page | 16

https://quarto.org/docs/authoring/notebook-embed.html
https://quarto.org/docs/authoring/diagrams.html

6. Creating New Documentation
Creating a new document is simple when you follow a clear workflow. You can either
start from a ready-made template or create a file from scratch.

6.1 Step 1: Start a New File
There are two ways to begin:
6.1.1 Option 1: Use a Template

1. Open the templates/ folder.
2. Choose the right template:

o CLMS``_Template``_ATBD.qmd for an Algorithm Theoretical Basis Document (ATBD)
o CLMS``_Template``_PUM.qmd for a Product User Manual (PUM)

3. Copy the template into the products/ folder.
4. Rename it to match your new document. Example: my-product.qmd
5. Create a new media folder named my-product-media/ next to it to store images and charts.

6.1.2 Option 2: Create from scratch
1. Inside the products/ folder, create a new file: e.g. my-product.qmd
2. Create a new media folder named my-product-media/ for related images and figures.
✅ Using templates is recommended because they include structure and
helpful comments. But starting from scratch gives you full control.

6.2 Step 2: Understand and Use the Template
Templates include:

 A pre-filled YAML header (the part at the top with ---)
 Required sections and headings
 Helpful comments you should keep while editing
✅ If you use an already defined template, the YAML header is included —
you don’t need to add it manually.

6.3 Step 3: Add or Adjust the YAML Header
If you’re creating the .qmd file from scratch (i.e. not using one of the provided ATBD
or PUM templates), you typically do not need to specify the format field
manually. Quarto will automatically apply its default rendering format, which is
sufficient in most cases.
However, if you need to customize the rendering outputs (e.g. to apply a specific
DOCX style), then you must define the format: field carefully.
These fields are required for correct rendering:

 format: controls how your document is rendered (HTML, styled DOCX, PDF)

 Important

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 17

You must include the pdf: default format in the YAML header.
Although PDF is not rendered directly during this step, defining it here ensures
compatibility with the automated rendering workflow later. Details are explained
in the Rendering Documentation section.

If you override the format section, please follow these strict guidelines:
 Only modify the format: block.
 You must define all three output formats:

o html:
o docx: (with reference-doc: pointing to the style template)
o pdf:

Improper modifications can break the rendering process locally or in the central
Technical Library. To see correct examples of a fully-defined format block, refer to
the template files in DOCS/templates/.
Here’s a basic header you can use:

title: "Product SHORT NAME"
subtitle: "Product full name"
date: "2022-10-06"
version: 1.0
template-version: 1.0.0
product-name: Product Name
description: "Product DESCRIPTION"

6.3.1 Field Descriptions:
 title: The main title of the document (displayed in the rendered output).
 subtitle: An optional second line of text under the title.
 date: The publication or last updated date.
 version: The version of your document (e.g. “1.0”, “v2.3-draft”).
 template-version: Not rendered — this is a special internal field that helps keep track of

which template was originally used. Do not remove or modify this field unless you’re updating
the template version intentionally.

These fields must be filled in by the user. Only other fields — such as
shared configuration or output format — are pre-filled in the template.

7. Importance of File Naming
Each .qmd file has a filename, like my-document.qmd, and this name plays an important
role in how your documentation is organized and accessed online.
The filename (without the .qmd extension):

 Is used to generate the final HTML file name.
 Becomes part of the document’s URL after publishing.

Example: If your file is named products/data-guide.qmd, the published URL will be
https://your-docs-site.org/products/data-guide.html.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 18

To avoid issues:
 Choose a clear, short, and consistent name when creating the file.
 Avoid renaming it later, as it can break links and references.
 Use lowercase letters and dashes (e.g. product-user-manual.qmd).

 Important

Stick with the original name once created unless you have a strong reason and
can update all links accordingly.

8. Ready-Made QMD Templates
To make documentation creation easier and more consistent, you can start your
work from ready-made .qmd template files. These templates include the correct
structure, required sections, and helpful comments to guide your editing.
Templates are stored in the templates/ directory. Currently, two types of templates
are provided:

8.1 ATBD Template
Filename: CLMS``_Template``_ATBD.qmd
This template is used for creating an Algorithm Theoretical Basis Document
(ATBD).
It includes:

 A structured outline based on standard ATBD requirements
 Placeholder sections for theory, algorithm descriptions, validation, and references
 YAML metadata pre-filled with necessary fields and style settings
 Commented guidance within each section
✅ Use this template when documenting the scientific or technical
foundation of a data product.

8.2 PUM Template
Filename: CLMS``_Template``_PUM.qmd
This template is used for creating a Product User Manual (PUM).
It includes:

 Sections for product overview, data access, interpretation, and use
 Notes on where to insert images, tables, and figures
 YAML header configured for standard rendering
✅ Use this template when documenting how users should interact with or
interpret a product.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 19

8.3 How to Use the Templates
1. Go to templates/
2. Choose either CLMS``_Template``_ATBD.qmd or CLMS``_Template``_PUM.qmd
3. Copy the file into the products/ folder
4. Rename it to match your project (e.g. my-product.qmd)
5. Begin editing based on the guidance in the template

If you’re unsure which template to use, ask your team lead or check what was used
in previous similar documents.

 Important

Do not modify the structure of the template unless absolutely necessary.
Keeping the structure consistent across all documents ensures that the
documentation system stays clear, professional, and easy to navigate for all
users and reviewers.

9. Using Pandoc to Convert DOCX to
QMD
When translating existing documents from Word (.docx) into Quarto Markdown
(.qmd), you can use Pandoc to quickly generate a base file. This can save time by
preserving text structure, headings, and even tables — though the result will still
need cleanup.

9.1 What is Pandoc?
Pandoc is a powerful command-line tool that can convert documents between
various formats, including Markdown, DOCX, HTML, LaTeX, and more.
To use Pandoc on your computer, download and install it from the official site:
https://pandoc.org/installing.html

9.2 When and How to Use It
Use Pandoc only for converting existing .docx documents into .qmd. Do not use it to
convert PDFs — Pandoc does not support PDF as an input format. This approach is
ideal when you’re:

 Migrating legacy documentation into the Quarto system
 Creating a quick starting point for manual cleanup
 Extracting embedded images and figures from .docx

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 20

https://pandoc.org/installing.html
https://pandoc.org/installing.html

9.3 Basic Usage Example
Open a terminal or command prompt — ideally from within RStudio’s Terminal
tab so you can stay in one environment — and run the following command. You can
provide either a relative or full path to the .docx file:
$ pandoc my-doc.docx -o my-doc.qmd --wrap=none --from=docx --
to=markdown+fenced_divs+grid_tables+pipe_tables+smart

9.3.1 What this command does:
 my-doc.docx: The input Word document.
 -o my-doc.qmd: Output file in Markdown format.
 --wrap=none: Prevents Pandoc from breaking long lines into multiple lines.
 --from=docx: Specifies that the input file is a Word document.
 --to=markdown+fenced_divs+grid_tables+pipe_tables+smart: Sets output format and

enables enhanced table and layout options.

9.4 Where Are Media Files Stored?
When Pandoc finds images or other media in the .docx file, it extracts them
automatically into a new folder.
By default, extracted media will be placed into a subfolder named media/, located
next to your output .qmd file.
This is created automatically and will contain all image assets referenced in the
converted file.
9.4.1 Changing the Media Folder Name
You can change the default media folder name using the --extract-media option:
$ pandoc my-doc.docx -o my-doc.qmd --extract-media=custom-media-folder

 Note

Pandoc will create a media/ subfolder inside the folder you specify. For example,
running the above command will result in:
custom-media-folder/media/

If you want to follow the structure expected by your project (e.g. my-doc-media/),
make sure to move the contents out of that inner media/ folder and place them
in the right location manually.

9.5 Next Steps
After conversion, you’ll likely need to:

 Clean up unnecessary styles or extra spacing
 Rename and organize media files
 Add a proper YAML header at the top of the .qmd file
 Restructure the content to match your template or documentation style

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 21

While not perfect, this method gives you a solid starting point — especially for long
or complex documents.

10. Default Styles and Options
To make documentation look consistent and professional, we use a set of
predefined styles and settings. These are applied automatically when you render
your .qmd files, so you don’t need to worry about design details — just focus on the
content.

10.1 Shared Styling Configuration
Most formatting options (fonts, colors, spacing, margins, etc.) are defined in shared
configuration files. These files are stored in styles directory and include:

 A custom DOCX file for styling PDF output
 A CSS stylesheet for HTML
 Metadata files for shared fields like project name, institution, and contributors

Don’t edit them! — they’re used automatically by the rendering scripts.

10.2 Theme
It ensures that all documents have a clean, modern, and consistent appearance —
both in HTML and PDF output.

This theme is applied automatically. You do not need to configure it
manually in your documents.

10.3 Table of Contents
The table of contents (TOC) is enabled by default and appears on the left-hand side
in HTML documents.
You can control how many heading levels are shown by adjusting toc-depth in your
YAML header, though the default setting (toc-depth: 3) is usually enough.

10.4 Customizing Per-Document Settings
If needed, you can override the default styles or add extra options in your
document’s YAML header. For example:
format:
 html:
 toc: true
 toc-depth: 3
 docx:
 reference-doc: ../styles/custom-reference.docx
 pdf: default

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 22

11. Automatic Keywords Generation
You do not need to manually add keywords to your document’s metadata. The
system is designed to handle this automatically using AI during the publishing
workflow.

11.1 How It Works
 The default Quarto metadata configuration automatically injects a special placeholder value

into the keywords: field in your document’s header.
 When your document is rendered and processed for publication, an AI service analyzes its

content and automatically generates 10 relevant keywords.
 These keywords help with document indexing, search, and classification on the publication

platform.

This process ensures consistent keyword formatting and reduces the work required
from authors.

11.2 What You Should Do
Nothing!
Simply leave the keywords: field untouched or omit it entirely. The publishing system
will take care of it for you.
If you do add custom keywords for internal purposes, they will be overwritten during
the publishing step — so it’s best to let the system manage them.

12. Using RStudio with Quarto
RStudio is the recommended tool for working with .qmd (Quarto Markdown) files. It
provides a simple, user-friendly interface for writing, editing, and rendering
documentation.
You don’t need to know R to use RStudio — we only use it here as a Markdown
editor with rendering features.

12.1 Opening Your Project
1. Open RStudio.
2. Use File > Open Project… and select the root folder of the Technical Library.
3. Navigate to the products/ folder.
4. Open the .qmd file you want to edit.

12.2 Editing QMD Files
You can edit .qmd files just like regular text documents. RStudio provides:

 Syntax highlighting for Markdown and code blocks
 A live preview of rendered output
 Auto-saving and formatting support

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 23

https://posit.co/products/open-source/rstudio/

 Instant feedback when rendering errors occur

Use the Preview on Save option (checkbox in the toolbar) to automatically render
your file every time you save it. This makes editing more efficient.

12.3 Managing Media Files
If your document uses images or diagrams:

 Place them in a dedicated media folder (e.g. my-doc-media/)
 Use relative paths in your .qmd file, like:

![Data Flow Diagram](my-doc-media/diagram.png)

13. Rendering Documentation
Once your .qmd file is ready, the next step is to render it — this means turning it into
a final document that can be published. Quarto supports multiple output formats,
but in our workflow, we focus on: HTML and PDF.
You can render your documentation directly in RStudio as described below or using
command-line tools, depending on what you prefer. Both options work the same
way and produce identical results — choose the one that fits your workflow best.

13.1 Render to HTML
HTML is the default output format and is useful for previewing your document in a
web browser while you work. Rendered HTML uses the custom Technical Library
theme and includes a table of contents, clickable navigation, and consistent styles.
It’s a great way to check formatting, layout, and images as you write.
There are two ways to preview your .qmd file:

 Click the Render button at the top of the RStudio window.

 Or enable Preview on Save (in the RStudio IDE toolbar). This option
automatically re-renders your document every time you save it.

After clicking the Render button (or saving the file with Preview on Save
enabled), the HTML version of your document will appear in the Viewer tab, located
in the Output pane (typically in the lower right corner of RStudio).

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 24

If the Viewer tab is not visible:
1. Go to Tools > Global Options in the top menu.
2. Navigate to the R Markdown section.
3. Ensure that Show output preview in: is set to Viewer Pane.

This setting ensures that rendered documents are displayed within RStudio,
providing a seamless preview experience.

13.2 Render to PDF via DOCX and LibreOffice
PDFs are not generated directly by Quarto. Instead, the process involves a few
automatic steps:

1. Quarto first generates a .docx (Word) file using the styles and settings defined in the YAML
header and shared config files.

2. Then, a LibreOffice macro automatically converts the .docx to .pdf.
3. The resulting PDF file is saved in the output location.

This approach ensures consistent and well-formatted PDFs, even across different
systems.

 Important

 Make sure pdf: default is included in your YAML header — this triggers the PDF pipeline.
 Do not define custom pdf: options unless you know what you’re doing.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 25

13.2.1 Preview with DOCX Instead of PDF
Instead of manually generating a PDF (which involves running scripts or waiting for
the automated conversion), you can simply render a .docx file. It will look almost
exactly like the final PDF because it uses the same styles and layout rules.
This is a great option when you want to quickly check how your document will look
in PDF format — especially while you’re still editing the .qmd file.
You don’t need to change the order of output formats in the YAML header. Just click
the black arrow next to the Render button in RStudio and select “Render MS
Word” from the dropdown menu.

After rendering, the .docx file will automatically open in your default DOCX editor
(e.g., Microsoft Word or LibreOffice Writer). If it doesn’t open automatically, you can
still find it saved in the same folder as your .qmd file, with the same base
filename.
This approach is fast and avoids editing the YAML just to preview layout changes.

13.3 Output Location
When you render a single .qmd file locally (e.g. using RStudio or the command line),
the output (HTML or DOCX/PDF) is saved next to your source file — usually inside
the products/ folder.
If you run the full command:
$ quarto render

then Quarto will build the entire Technical Library and save the results in a special
_site folder. However, this is typically handled automatically by the rendering
workflow in the GitHub repository during the publishing process.

✅ You do not need to render the entire library yourself. Just focus on
rendering the file you are currently working on. This keeps things faster
and easier to manage during editing.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 26

13.3.1 About the _quarto.yaml File
The _quarto.yaml file is a special configuration file that defines project-wide settings,
including the default output folder — which is _site.
When this file is present in the root of your project, RStudio (and Quarto) assumes
you’re working in project mode. That means it tries to render the entire site, not
just the file you’re editing.
This can cause a few issues during local editing:

 Slower preview performance
 RStudio sometimes doesn’t pick up the latest changes right away (likely due to caching)
 Viewer pane might not display fresh output

Unfortunately, this behavior isn’t clearly documented — but it can be confusing and
frustrating.
13.3.2 Recommended Setup for Efficient Editing
To avoid these issues, the repository includes a renamed config file: _quarto-not-
used.yaml. This allows users to edit and preview individual files efficiently without
triggering full-site rendering.
By default, this means:

 RStudio operates in “single file mode”
 Output files (HTML, DOCX) are written directly next to the .qmd file (e.g. in products/)

13.3.3 Rendering the Full Project
When you need to preview or build the entire Technical Library locally:

1. Rename _quarto-not-used.yaml to _quarto.yaml
2. Run:

$ quarto render

This builds the full site into the _site/ folder as defined in the YAML config.
⚠ Working with _quarto.yaml in place during regular editing can work, but
it may lead to slower performance or outdated previews in the Viewer
pane. For a smoother editing experience, keep it renamed by default.

14. Problems and Solutions
This chapter describes common problems you might face while editing .qmd files and
rendering documentation — along with practical solutions and best practices. These
issues are based on real experience working with the templates and rendering
workflow.

14.1 Text Styling in DOCX
Problem

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 27

You want to style or color specific parts of text in the final document, such as
bolding only part of a sentence or changing its color.
Solution
Use a custom character style from the template DOCX file. For example:
[**AD**]{custom-style="BoldRowText"}

This style (BoldRowText) is already defined in the template.docx file.

 Note

If you’re adding a new style to the .docx reference file, make sure it’s a
character style so it works correctly when applied inline in .qmd files. Custom
styles must always be defined as character styles — not paragraph styles. Using
the wrong type can cause formatting issues across the entire document.

14.2 Figure and Image Numbering
Problem
Figures and images inserted into .qmd files do not automatically include numbers in
the rendered DOCX or PDF file.
Workaround
You can use figure referencing like this:
![Short description](my-doc-media/image.jpg){{#fig-3 height=356px}}

However, this approach wraps the image in a table structure, which might cause
visible borders or layout issues — especially if your styling is strict or minimal.
Best Practice
For clean results:

 Add a manual figure number and title directly as text under the image.
 Avoid using automatic figure references unless necessary for cross-referencing.

Example:
![Diagram of processing flow](my-doc-media/flow-diagram.png)
Figure 3. Data processing flow chart.

14.3 Table Styling and Formatting
Problem
Only one table style is applied to all tables via the DOCX template, and additional
formatting — like emphasizing specific rows — isn’t applied automatically.
Solution

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 28

Use a custom character style (like BoldRowText) within cells that require special
formatting.
[**MRVPP**]{custom-style="BoldRowText"}

This will bold specific text while keeping the rest of the table structure intact.
Best Practice

 Do not change the table structure or layout in the DOCX file manually.
 Always apply row or cell formatting by using inline styled text directly in the .qmd source.
✅ If you need to format a row differently (e.g. a header row within the body
of the table), apply the style inline using the method above.

More issues will be added here as the system and workflow evolve. If you encounter
a formatting issue or rendering problem that isn’t listed, ask your team lead or
check how other documents handled similar cases.

15. Document Review and Git Workflow
15.1 Pushing Changes to Git
Each project maintains documentation in its own DOCS/ directory. When published to
the Technical Library, your project’s documents are available under a directory
named after your project’s Git repository name (<PROJECT_NAME>). These directories
are managed as git subtrees, meaning their version history is isolated from the
main repository for clarity and independence.
To publish updates to the central Technical Library:

1. Commit all your modified documentation files within your project repository:
 git add DOCS/

git commit -m "docs: update [brief description]"

2. Run the following command:
 git docs-publish

3. This command merges your subtree changes into the develop branch of the
central Technical Library repository.

4. After rendering, the updated Technical Library (develop version) becomes
accessible at https://eea.github.io/CLMS_documents/develop/index.html

15.2 Reviewing Documents
The release of the complete Technical Library is controlled by the Technical Library
owner.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 29

https://eea.github.io/CLMS_documents/develop/index.html

1. The process begins with the creation of a pull request (PR) from the develop branch to the
test branch.

2. This is a pre-release stage and is not automated.
3. When the PR is created, the PR title is automatically generated by GitHub Actions to

conform to semantic commit format rules.
4. Only a Technical Library owner can create this PR.
5. Repository rules require that the PR must be reviewed and accepted by at least one other

Technical Library owner.
6. Once the review is approved:

o The PR is merged.
o The preview (test) version is automatically rendered and published at

https://eea.github.io/CLMS_documents/test/index.html

15.3 Releasing Official Documentation
To publish the final release version:

1. A Technical Library owner must create a PR from test to main.
2. This PR also must be reviewed and approved by another repository owner.
3. Upon review approval:

o The PR is merged.
o The final, official version is automatically rendered and published at

https://eea.github.io/CLMS_documents/main/index.html
Version numbers for both pre-releases and official releases are automatically
generated as part of the release workflow.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 30

https://eea.github.io/CLMS_documents/main/index.html
https://eea.github.io/CLMS_documents/test/index.html

	1. Introduction
	2. Required Software
	2.1 Git
	2.2 RStudio
	2.3 Quarto
	2.4 Pandoc
	2.5 A Command Line Tool

	3. Adding Documentation to Your Project
	3.1 Link the Base Repository
	3.2 Add the DOCS/ Folder to Your Project
	3.3 Set Up Git Shortcuts
	3.4 Available Git Aliases

	4. Folder and File Structure
	4.0.1 What You Should Do
	4.0.2 Previewing Your Documentation

	5. Basic Markdown Syntax
	5.1 Line Breaks and New Lines
	5.1.1 Soft Line Break (Just Pressing Enter)
	5.1.2 Hard Line Break (Using at End of Line)
	5.1.3 Paragraph Break (Double Enter)
	5.1.4 Summary

	5.2 Headings
	5.3 Paragraphs and Line Breaks
	5.4 Bold and Italic Text
	5.5 Lists
	5.5.1 Bullet (Unordered) List
	5.5.2 Numbered (Ordered) List
	5.5.3 Paragraphs Within List Items
	5.5.4 Single-Item List Rendering Issue

	5.6 Links and Images
	5.6.1 Link
	5.6.2 Image

	5.7 Code Blocks and Inline Code
	5.7.1 Inline code
	5.7.2 Code block

	5.8 Tables
	5.8.1 Simple (Pipe) Table
	5.8.2 HTML-style Table (for advanced layouts)

	5.9 Figures (with captions and layout)
	5.10 Showing Images in Multiple Columns or Rows
	5.10.1 Without Captions
	5.10.2 With Captions

	5.11 Page Breaks for .docx/.pdf Outputs
	5.12 Equations
	5.12.1 Inline Equations
	5.12.2 Display Equations

	5.13 Diagrams
	5.13.1 Mermaid example
	5.13.2 Dot example

	5.14 Footnotes
	5.15 Notebook Output Embeds

	6. Creating New Documentation
	6.1 Step 1: Start a New File
	6.1.1 Option 1: Use a Template
	6.1.2 Option 2: Create from scratch

	6.2 Step 2: Understand and Use the Template
	6.3 Step 3: Add or Adjust the YAML Header
	6.3.1 Field Descriptions:

	7. Importance of File Naming
	8. Ready-Made QMD Templates
	8.1 ATBD Template
	8.2 PUM Template
	8.3 How to Use the Templates

	9. Using Pandoc to Convert DOCX to QMD
	9.1 What is Pandoc?
	9.2 When and How to Use It
	9.3 Basic Usage Example
	9.3.1 What this command does:

	9.4 Where Are Media Files Stored?
	9.4.1 Changing the Media Folder Name

	9.5 Next Steps

	10. Default Styles and Options
	10.1 Shared Styling Configuration
	10.2 Theme
	10.3 Table of Contents
	10.4 Customizing Per-Document Settings

	11. Automatic Keywords Generation
	11.1 How It Works
	11.2 What You Should Do

	12. Using RStudio with Quarto
	12.1 Opening Your Project
	12.2 Editing QMD Files
	12.3 Managing Media Files

	13. Rendering Documentation
	13.1 Render to HTML
	13.2 Render to PDF via DOCX and LibreOffice
	13.2.1 Preview with DOCX Instead of PDF

	13.3 Output Location
	13.3.1 About the _quarto.yaml File
	13.3.2 Recommended Setup for Efficient Editing
	13.3.3 Rendering the Full Project

	14. Problems and Solutions
	14.1 Text Styling in DOCX
	14.2 Figure and Image Numbering
	14.3 Table Styling and Formatting

	15. Document Review and Git Workflow
	15.1 Pushing Changes to Git
	15.2 Reviewing Documents
	15.3 Releasing Official Documentation

