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1. Executive summary
Copernicus  is  the  European  Union’s  Earth  Observation  Programme.  It  offers
information services based on satellite Earth observation and in situ (non-space)
data.  These  information  services  are  freely  and  openly  accessible  to  its  users
through  six  thematic  Copernicus  services  (Atmosphere  Monitoring,  Marine
Environment  Monitoring,  Land  Monitoring,  Climate  Change,  Emergency
Management and Security).
The  Copernicus  Land  Monitoring  Service  (CLMS)  is  jointly  implemented  by  the
European Environment Agency and the European Commission’s DG Joint Research
Centre (JRC) and provides geographical information on land cover and its changes,
land use,  vegetation state,  water cycle and earth surface energy variables to  a
broad range of users in Europe and across the world in the field of environmental
terrestrial  applications.  Within  this  service,  the  HighResolution  Vegetated  Land
Cover Characteristics (HRL VLCC) product suite provides detailed annual maps and
change layers for Tree Cover & Forests, Grasslands, and Croplands at resolutions of
10  meters  (status  layers)  and  20  meters  (change  layers).  The  High-Resolution
Vegetated  Land  Cover  Characteristics  products  extend  the  time-series  of  the
existing HRLs Forest and Grassland and complements the CLMS portfolio with new
layer dedicated to the mapping of Crop Types and Agricultural practices such as
mowing, harvest and cover crops.
The HRL VLCC products leverage advanced algorithms and multi-source satellite
data,  including  Sentinel-2  imagery,  to  ensure  high  thematic  accuracy.  Key
innovations  include  the  Base  Vegetation  Layer  (BVL),  which  harmonizes
classifications across land cover types, and new agricultural monitoring capabilities
such as crop type identification, ploughing indicators, and grassland mowing event
detection.  Complementary  confidence  layers  quantify  classification  reliability  for
enhanced decision-making.
This document serves as a critical resource for understanding the scientific rigor
behind  HRL  VLCC  products,  enabling  their  effective  application  in  biodiversity
conservation, agricultural monitoring, climate change adaptation, and compliance
with  EU  policies  such  as  the  Common  Agricultural  Policy  (CAP)  and  LULUCF
regulation.

2. Background of the document
2.1 Scope
The  Algorithm  Theoretical  Basis  Document  (ATBD)  for  the  High-Resolution
Vegetated Land Cover Characteristics (HRL VLCC) offers a comprehensive overview
of the methodologies, algorithms, and workflows underpinning the generation of the
HRL VLCC products.
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2.2 Content and structure
In more detail, the document is structured as follows:

 Chapter 1 contains the executive summary of the project together with a
general information about European Union’s Earth Observation Programme
and Copernicus Land Monitoring Service (CLMS),

 Chapter 2 details the scope, content and structure of this document with a
list of applicable documents,

 Chapter 3 describes the general thematic content and product descriptions
with the methodology and workflows,

 and the References and Annex Chapters list references to the cited literature
and documents.

3. Product Description
3.1 Base Vegetation Layer
The Base Vegetation Layer (BVL) is an internal processing layer to ensure better
base consistency between the VLCC product groups Croplands, Grasslands and Tree
Cover & Forests. The BVL provides a gap-free yearly mapping of the areas with tree
cover and cropland and/or grassland. It  also classifies a background class which
comprises non-vegetated areas (e.g. bare ground, urban areas, water), lichens and
mosses as well as shrubs (as long as not for agriculture such as vineyards). This
section details the applied methods for the production of the BVL. An overview of
the workflow is provided in Figure 1.
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Figure 1: High-level flow chart of the BVL workflow and its usage by the downstream
processors for Tree Cover & Forests, Grasslands and Croplands.

3.1.1 Input data
The main input data sources for the BVL are Sentinel-2 time-series covering the
period for a respective reference years ± 3 months (e.g. for 2018 observations from
2016-10-01 till 2019-03-31 are considered). Initially the Scene Classification Layers
(SCL) for all available S-2 L2A products and with a cloud coverage lower than 80%
are  retrieved  and  a  time-series  is  constructed  using  the  best  (i.e. lowest  cloud
cover) scenes within a given spatio-temporal window. Typically,windows of 15 days
and 20x20km are used, for parts of Scandinavia this has been augmented to 5 days
and 10x10km to reduce the impact of frequent cloud cover.
The  training  /  validation  and  test  data  required  for  the  model  calibration  are
compiled from various sources, such as from adjusted and filtered LUCAS (Eurostat,
2018) data of 2018, from stratified automated land cover (LC) class annotations
based on existing land use/land cover maps, such as the CORINE Land Cover (CLC)
2018 and HRL Imperviousness 2018. Those are complemented with additional visual
sample  point  photo-interpretation  from  Very  High  Resolution  (VHR)  imagery,
Normalised Difference Vegetation Index (NDVI) time series and auxiliary datasets.
The initial training dataset comprises approximately 1.1 Million training points which
are  subjected  to  routines  for  detecting  tree  cover  losses  (based on  NDVI  time-
series) as well as erroneous annotations and outliers related to general land cover
changes (Cleanlab, Northcutt et al., 2021). Additional sampling is performed during
the production on an ad hoc basis for particularly difficult areas.
3.1.2 Annual classification
Given  the  heterogeneity  of  the  addressed  European  landscapes,  all  classifier
training, testing and, finally, LC classification, is performed along substrata based
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on biogeographical regions (Metzger et al. 2013) and existing LC layers. The AOI is
subdivided in 232 of these substrata which form the Production Units (PUs) (Figure
2).  The goal  of  this stratification is  to facilitate the fitting of the models to the
regional specificities and thereby achieve a higher accuracy. The model architecture
is a Temporal Convolutional Neural Network (TempCNN, Pelletier et al. 2019) which
is  trained  with  labels  and  filtered  time-series  (see  section  Input  Data)  of  five
reference  years  in  the  respective  PU  and  a  buffer  area  of  10km.  Inference  is
performed on  yearly  time-series  for  the  target  reference year  ± 3  months  and
outputs yearly probabilities for the 6 basic land cover classes:

1. herbaceous vegetation;
2. tree cover-broadleaved;
3. tree cover-coniferous
4. cropland;
5. tree crops (i.e. nomenclature overlap between broadleaved tree cover and

permanent crops in the HRL Croplands product);
6. background  class  (including  bare  and  sparsely  vegetated  areas  and  non-

agricultural shrubs);
In a subsequent post-processing step two further classes are derived to delineate
the:

7. potential overlap herbaceous – cropland (i.e. pixels which are classified as
cropland and herbaceous at least once in the time-series);

8. The  second  derived  class  is  derived  from  the  intersection  of  all  areas
classified as tree cover and a preliminary version of the Tree Cover Density to
delineate areas with low Tree Cover Density and hence allowed overlaps of
herbaceous and tree cover.

The resulting Base Vegetation Layer is derived annually considering a time-window
of five years (e.g. 2017 – 2021) to delineate the boundaries between grassland,
cropland, tree cover and other land cover types (e.g. built-up areas, sealed areas,
water, bare ground, permanent snow/ice, non-agricultural shrubs) not relevant for
further processing steps within the HRL VLCC.
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Figure  2:  Production  units  subdividing  the  EEA-38  area  into  homogenous
biogeographical substrata for the production of the BVL (GF: French Guiana, GP:
Guadeloupe, MQ: Martinique, RE: Le Réunion, YT: Mayotte).

3.1.3 Post-classification processing
A sequence of post-processing steps is applied to improve the spatial and temporal
consistency of the products. Spatial filtering aims to reduce salt and pepper noise
and temporal filtering reduces frequent and implausible land cover changes (often
along the class boundaries). The designation of overlap classes accounts for known
overlaps in the nomenclatures and aims to minimize the inheritance of omission
errors in the extent of herbaceous and cropland areas for further Grasslands and
Croplands products.
An initial post-processing step involves applying bilateral filtering of the probabilities
to reduce noise while preserving sharp spatial edges between land cover classes
(Schindler  2012).  This  filtering  is  performed  prior  to  rule-based  harmonisation,
ensuring  that  downstream  products  maintain  spatially  consistent  classifications
while avoiding excessive blurring at class boundaries and preserving ecologically
meaningful edges. Subsequently the probabilities from any newly produced PU are
blended with the readily available  neighbouring PUs in an 10km overlap buffer.
Within  this  buffer  area  the  probabilities  of  all  relevant  PUs  are  averaged;  the
distance  to  the  PU  borders  are  used  as  a  weight  for  the  averaging  to  ensure
seamless classification results.
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In  a  further  step change detection is  performed to  identify  potential  tree cover
changes.  To  this  end,  the  sum  of  the  probabilities  for  tree  cover  (tree  cover-
broadleaved; tree cover-coniferous, tree crops) are considered; the difference of the
sums is  computed  between the  reference  year  at  the  intervals  of  the  3-yearly
change layers (2018-2021-2024). Changes from a tree cover class to a non-tree
cover  class  are  allowed  in  the  time-series  if  the  difference  of  the  tree  cover
probabilities exceed a certain threshold (see Section 3.2 for further details). Tree
cover changes that do not exceed the thresholds are harmonized in the time-series
to the class with the highest mean probability across a time-window of five years.
Finally,  a  rule-based  postprocessing  is  applied  to  harmonize  the  5-year
classification, identify areas with potential overlaps among the different HRL VLCC
products, and generate the final BVLs. Detected changes tree-cover changes are
not modified by the rule-based processing.
The rules summarized in Table 1 are processed hierarchically so that latter rules
overwrite the result of a previous rule for the same pixel:
Table 1:  Overview of  post-processing rules for the derivation of  the harmonized
annual BVLs.
Rule # Rule Purpose
1. Five-year temporal sequences 

of herbaceous vegetation and 
the background class are 
recoded to sequences of 
herbaceous vegetation only.

Reduction of potential omission
of herbaceous vegetation, 
especially in areas with dry 
grasslands.

2. Five-year temporal sequences 
of cropland and the background
class are recoded to sequences 
of cropland only.

Avoid omission of temporarily 
fallow land from cropland 
processing extent.

3. Five-year temporal sequences 
of cropland and herbaceous 
vegetation are recoded to class
7overlap herbaceous – 
cropland.

Reduce propagation of 
uncertainties in BVL 
classification for downstream 
processing of croplands and 
grasslands.

4. Any pixel with co-occurrence of 
tree cover and Tree Cover 
Density <=10% in any of the 
last five reference years is 
assigned to class 6 overlaps of 
herbaceous and tree cover.

Account for the overlap of the 
definitions of the HRL Tree 
Cover & Forests and HRL 
Grassland layer.

Those  processing  rules  result  into  two  further  potential  overlap  classes  being
identified:

 overlap herbaceous – cropland
 overlaps of herbaceous and tree cover

Pixels with overlap herbaceous – cropland are then subject to further processing by
both the Cropland and the Grassland processor. Specifically, pixels initially labelled
as  Fodder  Crops  in  a  preliminary  version  of  the  Crop  Type  (CTY)  product  are
removed from the CTY product and now assigned to the Herbaceous (HER) layer.
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Areas identified as overlaps of herbaceous and tree cover can be designated as
both  herbaceous  and  tree  cover  by  the  Grassland  and  Tree  Cover  &  Forest
processors, respectively. Similarly, areas identified as overlaps between crop and
tree cover (i.e. tree crops) can appear in both the Cropland products and the Tree
Cover & Forest products.

3.2 HRL Tree Cover & Forests
The HRL Tree Cover & Forests products comprise several annual status and 3-yearly
change layers which are partially derived from the outputs of the BVL classification
and combined with separate processing chain to estimate Tree Cover Density. This
section details the applied methods for the production of the Tree Cover & Forests
products. An overview of the workflow is provided in Figure 3.

Figure 3:  High-level  flow chart  of  the production workflow for  the Tree Cover  &
Forests products TCD, DLT, TCPC and DLTC.

Dominant Leaf Type (DLT), Tree Cover Presence Change (TCPC) and Dominant Leaf
Type Change (DLTC)
The  BVL  classification  provides  annual  probabilities  for  coniferous  trees,
broadleaved trees  and tree crops  (e.g. fruit  and olive  trees).  These probabilities
serve as inputs for generating several forest-related products:

 Yearly Dominant Leaf Type (DLT)

 Yearly Tree Cover Presence Change (TCPC)

 Yearly Dominant Leaf Type Change (DLTC)

The derivation process begins with the detection of  tree cover losses and gains
based on the sum of the probabilities for tree cover (tree cover-broadleaved; tree
cover-coniferous, tree crops). The difference of the sums of these probabilities is
computed between the reference years at the intervals t1 and t2 of the 3-yearly
change layers (e.g. between 2018 and 2021). Regionally calibrated thresholds are
then applied to these probability differences whereas:
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 Negative probability  differences below the threshold  are  assigned as  tree
cover loss

 Positive  probability  differences  above  the  threshold  are  assigned  as  tree
cover gain

Vice-versa all probability changes that do not exceed the thresholds are discarded.
For  these rejected changes the most probable class across the 5-year period is
assigned instead. Both accepted and rejected changes are then propagated back
into the annual DLT and BVL layers to ensure consistency. Accepted changes are
propagated to the time-step which has the highest difference in the time-series.
For example: The probability difference over three years (e.g. 2018-2021) for tree
loss is -60% and below a defined threshold of -45%. The change is accepted. In the
three annual  time steps (e.g. 2018-2019,  2019-2020, 2020-2021) the probability
differences are -20%, +10%, -50%. In this case the change is allocated in the last
time-step of the annual status layers.
From this process an initial change pixel-based 3-annual change mask is obtained.
This mask is aggregated to 20m resolution using the aggregation rules detailed in
Annex I.  To derive  Tree Cover Presence Change (TCPC) a Minimum Mapping
Unit (MMU) filter is applied (see Annex II for details) to:

 Eliminate change patches smaller than 1 hectare
 Fill small gaps within valid change patches

For the derivation of the Dominant Leaf Type Change (DLTC) the first step is the
computation of a pixel-wise differences of the DLTs at t1 and t2 and its subsequent
aggregation to 20m using the aggregation rules defined in Annex I. This raw version
of the DLTC is subsequently masked and harmonized with the TCPC. For patches
filled  during  the  MMU  filtering  of  the  TCPC the  leaf  type  information  is
complemented based on the majority of the surroundings in the raw DLTC to assure
full consistency between TCPC and DLTC.
3.2.1 Tree Cover Density (TCD)
For the annual Tree Cover Density (TCD) layer (starting with the reference year
2018), the median spectral values of Sentinel-2 bands (B02, B03, B04, B08, B11 and
B12)  are  computed for  the vegetation season of  each reference year.  In  areas,
affected by  persistent  snow or  heavy cloud cover  alternative  percentiles  of  the
respective bands are used to minimize potential  artefacts in the product.  These
spectral  inputs  are  complemented  by  the  mean  classification  probabilities  for
coniferous  trees,  broadleaved  trees  and  tree  crops  resulting  from  the  BVL
classification.
To train the model, reference samples are drawn from the previous version of HRL
TCD 2018 using a stratified sampling approach over areas with stable tree cover
across all 5 reference years. A CatBoost regression model (Dorogush et al. 2018) is
then trained with these yearly input data for the respective production unit and
used to estimate the TCD for each reference year over the full extent of the PU. The
model  calibration  involves  a  grid-search  during  which  different  degrees  of
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oversampling of lower and highest TCD value ranges are tested. The aim of this
gridsearch is  to  reduce the underestimation of  these values  ranges  in the final
layer.
In a subsequent post-processing step, the yearly TCD are harmonised by applying a
histogram matching technique (Coltuc et al. 2006) and an additional smoothing step
to  limit  sudden  implausible  spikes  in  the  TCD  over  time.  Lastly,  the  DLT
classification is  applied on top of  the TCD to mask out non-tree covered areas,
ensuring the final product reflects only valid tree cover.
A series of further layers is derived from the TCD, DLT as well of other ancillary
datasets. An overview of the dependencies of these derived products is provided in
Figure 4 and detailed in the following paragraphs.
3.2.2 Forest Additional Support Layer (FADSL)
The Forest Additional Support Layer (FADSL) at 10m spatial resolution is used
to separate real “forest” areas from non-forest areas (i.e. trees predominantly used
for agricultural practices, trees in urban context) in order to derive a Forest Type
product  which  is  largely  following  the  FAO definition.  The  respective  areas  are
derived through a rule-based spatial intersection of the 10m DLT and  TCD layers
with CLC 2018 and IMD 2018.

1. Generation of a binary mask with

 0: non-impervious: HRL IMD == 0
 1: impervious: HRL IMD > 0
2. Filtering of all contiguous all non-impervious patches < 25 ha which are fully

surrounded  by  impervious  areas  in  a  4-pixel  connectivity  mode  and
subsequently reclassification to 1 = all impervious areas.

3. Hierarchical intersection of the DLT (with TCD ranging from 10-100%),  CLC
2018 (vector geometries rasterized at 10m spatial resolution) and the gap-
filled imperviousness dataset as detailed in Table 2 .

Table  2  FADSL -  hierarchical  intersection of  input  layers  and resulting thematic
classes
Order DLT Class CLCClass IMDClass FADSLClass Class 

Description
1.) 1 or 2 any 1 4 trees in urban 

context – 
broadleaved 
and coniferous
(from HRL 
Imperviousnes
s context)

2.) 1 or 2 141 0 5 trees in urban 
context – 
broadleaved 
and coniferous
(from CLC 
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Order DLT Class CLCClass IMDClass FADSLClass Class 
Description
class 1.4.1)

3.) 1 222or223 any 3 trees 
predominantly
used for 
agricultural 
practices – 
broadleaved 
(from CLC 
classes 2.2.2 
and 2.2.3)

255 any any 255 outside area 
(predefined 
through 
boundary 
layer)

any other 
remaining 
combination

any other 
remaining 
combination

any other 
remaining 
combination

0 all non-tree 
areas, and 
tree cover 
without urban 
context or 
agricultural 
use

It is worth mentioning that the derived delineation of non-forest tree cover areas
has  certain  limitations  due to  the specifications and thematic  accuracies  of  the
different input data (DLT with density values ranging from 10-100%; CLC 2018 with
25 ha MMU; IMD 2018 also representing infrastructure). This includes the frequency
and timelines of updates which imposes the need use input layers that predate the
actual reference year of the FTY (e.g. FTY 2021 was produced using still CLC 2018
and the first version of the HRL IMD 2018.
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Figure 4:  High-level  flow chart  of  the production workflow for  the Tree Cover  &
Forests products FADSL, FTY and aggregated products at 100m.

3.2.3 Forest Type (FTY)
The  Forest  Type  (FTY) layer  implements  forest  maps  largely  following  the
definition provided by the Food and Agriculture Organization (FAO), as specified in
the terms and definitions of the Global Forest Resources Assessment (FRA) Working
Paper 1 (FAO, 2012).  The 10m FTY product is  computed by applying the FAO´s
definition, however, for EEA-specific purposes, it  explicitly  includes tree cover in
traditional agroforestry systems, such as Dehesa and Montado, which are typically
excluded under standard FAO criteria.
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In a first step an intermediate tree cover mask product is derived through spatial
intersection of the two primary status layers  TCD (≥ 10-100%) and *DLT, where
areas under agricultural use and in urban context as provided by the  FADSL are
excluded. To ensure consistency with the specified Minimum Mapping Unit (MMU) of
0.5 hectares (equivalent to 50 pixels), the resulting tree cover mask is refined using
the GDALSieve1 operation. This operation removes small patches below the MMU
and fills in small gaps. The output is used to create an initial version of the Forest
Type product, that is still missing information in areas, which were filled and marked
as tree cover during the sieving process. Furthermore, an ancillary mask is created
by mapping these specific pixels with no data values. The GDALFillNodata2 function
is used to assign values to the pixel shown in the ancillary mask by using an inverse
distance  weighting  algorithm  to  fill  NoData  areas  based  on  the  values  of
surrounding pixels.  In  the last  formatting step those interpolated areas and the
initial Forest Type version are combined to form the final Forest Type product, which
is finally aligned to the processing extent as given in the official Boundary Layer
(EEA, 2023).
3.2.4  Aggregated  products  -  Tree  Cover  Density  (TCD)  100m,
Broadleaved Cover Density (BCD) & Coniferous Cover Density (CCD)
The TCD at 100m spatial resolution is derived through spatial aggregation from the
10m TCD status layer for the respective reference year. The 100m LAEA grid is used
to calculate the arithmetic mean density of all underlying 10m pixels (with density
values from 0-100) for each 100m cell. The thereof resulting mean values from the
aggregation (floating point data type) are rounded and finally converted to integer
values (e.g. raw values in the range from 33.5 to 34.4 are converted to a density
value of 34).
Several  further  layers  are  derived  through  operations  of  intersection  and
aggregations  including  Broadleaved  Cover  Density  (BCD) and  Coniferous
Cover Density (CCD) layers. BCD is the aggregated density of broadleaved trees
and shows  the  percentage  of  broadleaved pixels  in  the  DLT for  the  respective
reference year while CCD is the aggregated density of coniferous trees and shows
the percentage of coniferous pixels. Both BCD and CCD layers are derived through
aggregation of  the 10m  DLT.  The 100m LAEA grid  is  overlaid  to  the 10m  DLT
product. Within each 100m cell the number of broadleaved and coniferous pixels
are counted and the respective percentages stored into 100m pixel of the CCD and
BCD, respectively.
3.2.5 Aggregated products - Forest Type (FTY) 100m
The FTY at 100m spatial resolution is derived through spatial aggregation from the
FTY 10m status layer based on the spatially consistent EEA 100m grid. The first step
is to identify forest covered 100m cells by counting and summing up all forest pixels
(broadleaved and coniferous) of the 10m FTY product within the respective grid cell.
1 
https://gdal.org/en/stable/api/gdal_alg.html#_CPPv415GDALSieveFilter15GDALRasterBandH15GDALRasterBandH15
GDALRasterBandHiiPPc16GDALProgressFuncPv
2 
https://gdal.org/en/stable/api/gdal_alg.html#_CPPv414GDALFillNodata15GDALRasterBandH15GDALRasterBandHdiiP
Pc16GDALProgressFuncPv
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If  the number of forest pixels is ≥ 50, the 100m grid cell  is assigned to “forest
cover”. In case a 100m cell contains less than 50 forest covered 10m pixels, it will
be labelled as all non-forest areas in the final product.
After identifying the forest areas, the CORINE Land Cover definition for broadleaved,
coniferous and mixed forest is applied. The class broadleaved forest is assigned in
100m grid cells, which contain ≥75% forest pixels belonging to broadleaved. If a
100m grid cells consists of ≥ 75% coniferous pixels within the forested area it is
assigned to coniferous forest. Areas in which neither “broadleaved” nor “coniferous”
constituents account for ≥75% of the 10m forest pixels are labelled as mixed zones.
3.2.6 Dominant Leaf Type Confidence Layer (DLTCL)
The  DLTCL uses the probabilities gained during  BVL/DLT computation from the
Temporal convolutional neural  network to compute classification confidence. The
classification confidence is considered here as the probability margin between the
highest  and  second  highest  ranked  leaf  type  class.  The  margin  is  derived  by
calculating  the  absolute  difference  values  of  probabilities  for  coniferous  and
broadleaved tree cover classes. High confidence (up to 100%) indicates domination
of one class, whereas lower values (close to 0%) are typical for areas with similar
probabilities, suggesting uncertainty or mixed tree cover types.
3.2.7 Tree Cover Density Confidence Layer (TCDCL)
The TCDCL uses the Total Uncertainty (Variance) metric calculated from CatBoost
algorithm to derive the standard deviation for  each estimated TCD value.  Total
uncertainty is the sum of data and knowledge uncertainty. The former can be seen
as  a  measure  for  data  complexity  due  to  noisy  data  or  overlapping  classes.
Knowledge uncertainty is obtained from a single CatBoost model by using virtual
ensembles (Malinin et al. 2020). If this option is enabled during the CatBoost run the
one existing model is basically divided into (n) separate models. The annual  TCD
production was done with ()=10. Based on these 10 models Knowledge uncertainty
is  computed  by  the variance  of  the  mean values  predicted  by  all  models.  Low
TCDCL values indicate high confidence in the estimated TCD value.
3.2.8 Tree Cover Presence Change Confidence Layer (TCPCCL)
The TCPCCL relies as well on the probabilities for coniferous and broadleaved tree
cover classes gained during BVL/DLT computation to calculate change confidence.
The change confidence here refers to the change in combined tree cover probability
from 2018 to 2021. This is done by summing up the probabilities for coniferous and
broadleaved tree cover classes for each reference year and afterwards the absolute
difference is calculated between 2018 and 2021 respectively. High values signal a
big difference between both years and thus a high confidence in change detection,
whereas lower values indicate some uncertainty.
3.2.9 Encountered issues and known limitations
Omission of  sparse  tree cover is  commonly  known  challenge  for  tree  cover
mapping since lower canopy cover leads to a mixed reflectance signal that becomes
increasingly  dominated  by  the  understory.  The  issue  is  further  aggravated  by
imperfections of the multi-temporal  coregistration of  the Sentinel-2 data. Sparse
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tree cover  is  common at  the timber line but  in  particular  in  the Mediterranean
comprising  agroforestry  systems  (Dehesas,  Montados)  and  Olive  Groves.  Initial
classifications for the Iberian Peninsula and Southern Italy revealed large areas of
Olive  Groves  and  Dehesas  which  triggered  a  reprocessing.  This  included  the
revision of  approximately  7000 additional  samples  and the collection of  around
5500 additional tree cover samples. Retraining the model with the revised sample
database  indeed  provided  major  improvements.  Further  enhancements  were
implemented also in the post-processing to boost tree cover probabilities in areas
designated as Agroforestry, Olive Groves and other type of tree cover according to
the Corine Land Cover layer for 2018. An example for the status of the DLT before
and after the reprocessing is provided in Figure 5. Though the reprocessing has
significantly reduced the amount of omission errors, tree cover omission is generally
still more pronounced in the Mediterranean region.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 17



Figure  5:  Dominant  Leaf  Type  for  the  reference  year  2021  a)  after  initial
classification and b) after reprocessing for agroforestry system in Andalusia, Spain
(LAEA 3044254.4m, 1822153.02m) Background Google Maps VHR imagery 03/2021.

The  employed  regression-based  method  for  the  estimation  of  the  Tree  Cover
Density is  generally  sensitive to the propagation of  artefacts resulting from
cloud cover and topographic effects from the input satellite imagery. The usage
of median time features is in most cases robust to such artefacts but some issues
have been encountered frequently, not all of which could be fully resolved in the
final layers.
This concerns topographic effects where cast shadows result in dark features in the
imagery and an overestimation of the TCD. Similarly, the topographic correction of
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the Sentinel-2 L2A processor tends to overestimate reflectance on north and north-
west facing slopes which in turn can lead to an underestimation of the TCD. Such
topographic effects are typically more pronounced at higher latitudes with lower sun
angles. An example is provided in Figure 6.
Underestimations and spatial patterns that are not related to actual variations of
the canopies can also be caused by cloud cover. On the one hand, this can be
caused by clouds that are not detected in the SCL accompanying the Sentinel-2 L2A
data.  On  the  other  hand,  frequent  cloudcover  during  the  peak  period  of  the
vegetation season can lead to a higher impact of scenes from early spring that may
depict broadleaved deciduous tree (especially those with later leaf emergence such
as Fagus and Quercus) still with leaf off conditions. A rigorous quality control was
conducted to detect such artefacts and adjust parameters for median time-feature
computation as much as possible. This included for example the usage of shorter
time-windows (starting only in May) or alternative statistical metrics such as 25th-
and 75th percentiles.  While this enabled to significantly  reduced the amount of
artefacts as illustrated in Figure 7,  it  was not possible to fully  resolve all  cases
encountered.
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Figure 6: Example for an area with imprints of topographic effects into the Tree
Cover Density layer  in  Northern Norway (LAEA.  4833337.67m, 5288588.26m) a)
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VHR image 07/2021 (Google Maps) b) final TCD layer for 2021 and c) median of S-2
L2A band 3 over the vegetation season.

Figure 7: Example for initial TCD underestimation due to proportional high number
of early spring scenes with trees in leaf-off conditions in Northern Germany (LAEA,
4186992.95m 3368117.83m).  a)  initial  (unmasked) TCD estimates  using median
features  for  March  –  October  2021  and  showing  severe  underestimation  for
broadleaved deciduous canopies, b) VHR image 2021 and c) final TCD based on
reduced time window from May to September 2021 and percentile features.

3.3 HRL Grasslands status and change layers
This section gives an overview of the methodology employed to produce the layers
Herbaceous Cover (HER),  Ploughing Indicator (PLOUGH),  Grassland (GRA)
and Grassland Change (GRAC).
3.3.1 Input data
All  grassland  products  described  in  the  following  subsections  are  based  on  a
common set of input and auxiliary data. The main source of information is the Base
Vegetation Layer (BVL), specifically the probability associated with the herbaceous
class serves as a starting point for subsequent derivations.
In addition to the BVL, different sets of auxiliary data are needed:

 Corine  Land  Cover  (CLC  2018)3 (to  dampen  the  probability  of  certain
areas)

3 https://land.copernicus.eu/en/products/corine-land-cover/clc2018
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 CLCplus Backbone 2018 (CLCplus BB)4 (as reference to derive probability
thresholds)

 HRL Grassland 20185 (as reference to derive probability thresholds)
 Previous  version  of  HRL  Ploughing  Indicator 2018  (to  mark  ploughing

events before availability of S2 data in 2017)

3.3.2 Herbaceous Cover (HER)
The  production  of  the  Herbaceous  Cover  (HER) is  primarily  based  on  the
probability estimates obtained from the Base Vegetation Layer (BVL) which also
serves  to  harmonise  the  different  vegetated  HRL products,  including  HRL
Grasslands, Tree Cover & Forests and Croplands. The BVL is created annually
(2017-2021) and using probability estimates of various land cover types.
To derive the herbaceous layer, various operations are performed on the probability
estimates to either locally increase or decrease the herbaceous probabilities. The
Corine Land Cover (CLC) 2018 layer is  applied to weight the probabilities  for
some classes such as peat bogs, sclerophyllous vegetation and others to eliminate
false positives from the 2018 reference year classification. To determine the final
herbaceous layer, a suitable threshold must be established for each processing unit
(i.e. EEA tile). Probabilities above this threshold are considered to be herbaceous.
The thresholds are calibrated using additional CLMS products, the previous version
of  HRL Grassland 2018 and  CLC 2018.  The  BVL herbaceous  probabilities  are
compared with all matching pixels from these layers. This ensures that only pixels
are considered where both layers indicate the same land cover type. The threshold
is  chosen  dynamically  by  finding  the  probability  which  maximizes  the  accuracy
between the herbaceous  BVL probability and the CLMS products. To avoid a too
general (or even constant) threshold for the whole EEA tile, the accuracy is matched
in 16 sub-tiles and then interpolated over the whole tile using a Gaussian filter. This
process ensures that strong differences in landscape and vegetation within an EEA
tile are still addressed.
To further tune these HER thresholds a manual inspection using visually interpreted
sample points is conducted. In case of strong over- or underestimation the process
can  be  rerun  manually  forcing  the  algorithm  to  use  increased  or  decreased
thresholds.
Moreover, the probabilities between yearly layers are harmonized to reduce rapid
changes that are often due to classification noise. This achieved by calculating the
(fast) Dynamic Time Warp (DTW) of the time-series of two subsequent years using
the  Vegetation Phenology and Productivity– Plant Phenology Index (HR-
VPP PPI)6 time-series (Salvador et. al. 2007). All yearly binary HER layers are finally
determined by  applying  the  threshold  found in  the  procedure  described  above.
Further details follow in the Grassland Change (GRAC) layer section 3.3.6.
4 https://land.copernicus.eu/en/products/high-resolution-layer-grasslands/grassland-2018-raster-10-m-100-m-
europe-yearly
5 https://land.copernicus.eu/en/products/high-resolution-layer-grasslands/grassland-2018-raster-10-m-100-m-
europe-yearly
6 https://land.copernicus.eu/en/products/vegetation
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Additionally, the binary HER layer is enriched with information from the Crop Types
(CTY) layer. All pixels classified as fodder crop (class 1500) are included (for each
year respectively) in the binary HER layer. Finally, the herbaceous extent is clipped
to the yearly BVL.
The following steps are needed to derive the herbaceous products:

 Retrieve herbaceous probability estimates from BVL herbaceous class.
 Find threshold in reference year by maximizing accuracy when compared to

CLMS products
 Tune probability estimates

o Dampen probabilities of selected classes using CLC 2018 to eliminate
false positives.

o Harmonize  probabilities  between  yearly  layers  to  reduce  rapid
changes.

 Apply threshold to all years to determine binary layers
 Mask herbaceous layer
 Data  outputs  (creation  of  the  Cloud-Optimized-GeoTiffs,  colortables,

metadata)

3.3.3 Ploughing Indicator (PLOUGH)
The PLOUGH indicator is generated by analysing a combination of data sources: a
series  of  binary  HER (herbaceous)  classification  layers,  BVL (Base  Vegetation
Layer) classes, and HR VPP PPI (Plant Phenology Index) quantiles.

 BVL classes 4 (crop) and 7 (transition between herbaceous and crop) are
used as indicators of a ploughing event.

 Low PPI quantiles signal periods of low vegetation, which may correspond to
ploughing activity.

For reference years before 2017, where data is missing, the system uses ploughing
records from the historic  PLOUGH (HIS-PLOUGH) product, which can introduce
certain inconsistencies (see section 3.3.9).
The algorithm works by detecting the first  break in a continuous series of  HER
classifications—a potential sign of ploughing. If such a break is found, it’s labelled as
a “possible ploughing event” and is then cross-checked with both the PPI data and
BVL classification to confirm if ploughing actually occurred.

 If the break is confirmed, it’s recorded as a ploughing event.
 If it’s not confirmed, the pixel is either:

o Reclassified as HER (if the BVL suggests it’s still herbaceous because
it’s inside a crop class), or
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o Assigned to Class 100, indicating a change in HER cover but not due to
ploughing.

If no break is found, the pixel is excluded from the PLOUGH layer but will still be
included as  grassland in  the GRA layer.  See Figure  8 for  a  visualization  of  the
workflow as a flowchart.
To  reduce  salt-and-pepper  noise,  the  final  PLOUGH layer  is  filtered  using  a
minimum mapping unit (MMU) of 0.03 ha (i.e. 3x10m pixels). Since the processing
based  on  100km  tiles,  this  step  includes  gathering  intermediate  version  of  all
neighbouring tiles to avoid edge-effects at the tile borders.
Data  outputs  include  the  creation  of  Cloud-Optimized  GeoTIFFs,  accompanying
colour tables, and detailed metadata.

Figure 8: Flowchart of the PLOUGH decision logic

3.3.4 Grassland (GRA)
The  Grassland (GRA) layers  are directly derived from the  Herbaceous Cover
(HER) and Ploughing (PLOUGH) layers. A pixel is considered to be grassland if it
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has been herbaceous for five consecutive years7. To retrieve this information the
corresponding binary HER layer is masked with the corresponding PLOUGH layer,
leaving only HER pixels which have not been ploughed in the previous year.
Like the  HER layer, each Grassland layer is clipped to the yearly  BVL extent and
filtered to a MMU of 0.03 ha. However, only class 1 of the BVL is used to mask the
GRA layer (unlike classes 1, 6 and 7 for HER), since overlaying classes 6 and 7 do
not allow grassland classifications.
The following steps are needed to derive the HRL Grasslands layers:

 Mask  binary  Herbaceous  Cover  (HER) with  ploughing  indicator  to
determine grassland layer

 Mask Grassland (GRA) layer to yearly BVL (class 1 only)
 Application of the MMU 0.03 ha (i.e. of 3 x 10m pixels). Since the processing

based on 100km tiles, this step includes gathering intermediate version of all
neighbouring tiles to avoid edge-effects at the tile borders.

 Finalizing  steps  (creation  of  the  Cloud-Optimized-GeoTiffs,  colortables,
metadata)

The application of the MMU and the finalization steps are performed only after all
tiles have been processed to also take border regions of adjacent tiles into account.
3.3.5 Grassland Confidence (GRACL)
The  Grassland Confidence Layer (GRACL) gives an estimate of how confident
the classification was in predicting a certain grassland pixel. It is derived as the
mean taken over the respective herbaceous confidence values. These are not an
actual  layer  but  are  still  derived  in  the  workflow  process.  The  herbaceous
confidence for any year is the difference between an herbaceous probability taken
from  the  BVL and  the  second  highest  probability.  Therefore,  the  higher  the
herbaceous  probability  is,  the  greater  the  difference  to  the  second  highest
probability  and  therefore  also  a  higher  herbaceous  confidence  value.  In  case
another probability is higher than the herbaceous probability, the confidence value
is set to zero.
The  grassland  confidence  is  then  simply  derived  as  the  mean  of  the  relevant
herbaceous confidence layers.
Furthermore, the layer is clipped to actual grassland pixels. Note, that it is possible,
even though unlikely, that a grassland pixel can result in having a confidence value
of zero, if the mean of all herbaceous confidence values resulted in zero.
3.3.6 Grassland Change (GRAC)
As described above, the main part of the processing and time-series analysis is
carried out in the processing of the herbaceous layer as this builds the fundament
of  any  subsequently  derived  layer.  For  the  change  detection,  it  is  specifically
important  to  include  a  sophisticated  time-series  analysis  into  the  herbaceous
classification to prevent false class-flips between consecutive years and therefore to
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avoid artificial changes introduced by classification noise by calculating the (fast)
Dynamic Time Warp (DTW) of the time-series of two subsequent years as already
described in section  Section     3.3.2   In principle, various vegetation indices, such as
Normalised Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) or
Leave Area Index (LAI), can be utilized to accomplish this objective. However, for
ease of use and availability, it was decided to use HR-VPP PPI7 time-series for this
analysis.
Depending on the similarity of the time-series in terms of DTW, the raw herbaceous
classification probabilities are adapted according to the following formula:

with

In this equation,  and  represent the herbaceous classification probabilities for the
two years, while  and  stand for their corresponding vegetation sensitive index time-
series, specifically the HR-VPP PPI8 time-series. This approach allows to define two
thresholds,  and  which define the level of similarity that must be reached by the
two signals to allow or suppress a possible class switch in the Herbaceous Cover
(HER). In simple terms, the DTW gives a low value for very similar time series and a
high value if the time-series are different. If no change is seen, the classification
probability of the previous year is kept. Values in between the two thresholds are
linearly interpolated. For the production, the thresholds were set to 0,5 and 1,5,
respectively.
After the grassland layers have been processed with the above algorithm,
the derivation of the grassland change follows the following steps:

 Aggregation to 20m by a majority rule (see aggregation rules in Annex II)
 Assignment of the GRAC classes:

o 0: Non-grassland in both years
o 1: Grassland gain
o 2: Grassland loss
o 10: Grassland in both years

 Application of the MMU of 1.0 ha (i.e. 25 x 20m pixels) for grassland losses
and gains by the following steps:

o Mask creation for losses and gains
o Sieving  of  all  classes  with  the  above  size  threshold.  Since  the

processing  based  on  100km  tiles,  this  step  includes  gathering

7 https://land.copernicus.eu/en/products/vegetation
8 https://land.copernicus.eu/en/products/vegetation
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intermediate version of all neighbouring tiles to avoid edge-effects at
the tile borders.

 Application of the filtered layer in masked parts
 Data  output  (creation  of  the  Cloud-Optimized-GeoTiffs,  colour  tables,

metadata)
The application of the MMU and the finalisation steps are performed only after all
tiles have been processed to also take border regions of adjacent tiles into account.
3.3.7 Grassland Change Confidence Layer (GRACCL)
The  Grassland Change Confidence Layer (GRACCL) gives an estimate on the
confidence  for  the grassland gains  and losses  derived  in  the  Grassland  Change
layer. To derive this confidence value the grassland probability layers from 2018
and  2021  are  needed.  These  are  derived  by  applying  the  mean  to  all  for  the
reference year relevant herbaceous layers (e.g. for the 2021 grassland probability
the mean over  all  herbaceous  layers  from 2017-2021 are  used,  since  all  those
reference years influence those probabilities.
The grassland change confidence value is then derived as

where  p1  is  the grassland  probability  of  the first  reference  year  and  p2 is  the
grassland probability of the second reference year.
This value is only derived for grassland change pixels which identify as grassland
gains or losses.
3.3.8 Aggregated products – Grassland (GRA)100m
A further 100m Grassland layer is derived through aggregation from the Grassland
layer at 10m spatial resolution. To this end, all grassland 10m GRA pixels within the
extent of a GRA 100m pixel are counted and reported as the aggregated GRA 100m
value  in  the  range  [0,  100].  No  data  values  such  as  255  are  ignored  and  not
counted during the aggregation.
3.3.9 Encountered issues and known limitations
Initial  tests  demonstrated  that  the  HER  time-series was  susceptible  to  false
positive changes which in turn generated false positive changes in the GRA time-
series and the GRAC.
This issue was addressed by harmonizing the HER time-series by comparing it with
a change layer derived from the  HR-VPP PPI (see  Section     3.3.6  ). A  HER pixel is
only allowed to change from one year to the next if there is a strong enough signal
change detected in the  HR-VPP PPI.  The rules were applied more rigorously to
ensure a higher consistency. The following Error! Reference source not found.
shows an example of the GRAC layer in EEA tile E39N31 comparing changes from
the previous test production vs. the processor deployed in production. The number
of  positive  and  negative  changes  decreased  significantly  due  to  the  harder
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constraints on change during the years. The restrictions on HER layers being more
consistent throughout the years propagates further to the GRA and GRAC layers.

Figure 9: Comparison of GRAC layers from test production and current production
taken  from  EEA  tile  E39N31  (upper  example  in  the  centre  around  (3957750,
3114334),  lower example in the centre around (3984094, 3150073).  Blue areas
indicate grassland gain, red areas indicate grassland loss (for year 2018 to 2021).

The HIS-PLOUGH from 2012 to 2015 is based on Landsat data and hence not fully
consistent  in  terms of  quality  and  resolution  (20m)  with  the  PLOUGH for  later
reference years (10m, based on Sentinel-2). This issue was already realized during
the  HRL  2018  production  and  at  the  time  it  was  decided  to  rely  on  the  HIS-
PLOUGH for  the  years  2016-2018  only9.  The  same  strategy  would  lead  to
continuously decreasing grassland extent in the 2017-2021 time series and thus,
the full PLOUGH time series was hence considered to mitigate the issue. However,
the variable resolution and quality of the early HIS-PLOUGH years still propagates
to some degree to the  Grassland (GRA) time-series (Error! Reference source
not found.).
This limitation is generally difficult to be solved completely due to the unavailability
of suitable Sentinel-2 time-series before 2017.

9 https://land.copernicus.eu/en/technical-library/hrl-grassland-2018-product-user-manual
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Figure 10: EEA tile E35N25. On the left side PLOUGH 2015 in 20 m and on the right
side, the PLOUGH 2017-2021. The orange (left) and the yellow (right) patch in the
centre of the figures comes from the HIST-PLOUGH and therefore shows the outline
of the 20 m pixel size at that time.

The introduction of the HER has caused inconsistency issues between the  HER,
GRA and the  HISPLOUGH. Therefore, the  HIS-PLOUGH product was adapted as
the  following:  Class  0  -  indication  of  ploughing  in  current  year,  former  class  0
converted to class 253, class 100 will  contain all pixel that change between two
years due to changes in the HER but not ploughed to maintain consistency between
PLOUGH,  GRA and  HER layers.  Please refer  to  Error! Reference source not
found. for a side-by-side view of the old and new class coding.

Figure 11: Colour palette and attributes of PLOUGH layer. Left: HRL GRA 2015/2018
and right HRL VLCC.

3.4 HRL Grasslands mowing layers
I  this  section  the  methods  and  workflows  for  the  production  of  the  layers,
Grassland Mowing Events (GRAME), Grassland Mowing Dates (GRAMD) and
the Grassland Mowing Events Confidence Layer (GRAMECL) are explained in
more detail.
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3.4.1 Input data
The main source of information for the  Grassland Mowing (GRAM) layers are
time series of high-resolution Sentinel-2 satellite data. Both processing Sentinel-2
processing levels Level-1C and Level 2A are used in the processing chain. Since
undetected clouds and cloud shadows remain a significant drawback for the time-
series  analysis  additional  custom cloud  masks  are  required.  Sentinel-2  Level-1C
product (providing Top-Of-Atmosphere reflectance images) serves as the primary
input  for  the  calculation  of  cloud  masks.  The  Level-2A  product  (Bottom-
OfAtmosphere reflectance as provided by WEkEO /  ESA),  serves as the primary
input for the mowing detection via a time-series analysis. In addition to Sentinel-2
imagery, additional auxiliary data are needed:

 CLMS High Resolution Vegetation Phenology and Productivity layer
(HR-VPP): Startof-Season Date (SOSD) and End-of-Season Date (EOSD) (to
calculate growing season parameters,

 CLMS HRL Herbaceous layer (HER) mask to perform the analysis only on
the detected herbaceous area.

3.4.2 Grassland Mowing Dates (GRAMD)
Based on a thorough analysis  of  available methodologies and experiences from
CAP-based  monitoring  of  mowing  events,  a  methodology  closely  following  the
approach of Griffiths et al., 2020, was developed. Mowing events are determined by
looking for disturbances (unusually sharp drops in biophysical signal) compared to a
reference value. To determine the reference value, a reference time series model
approximating the theoretical phenology of undisturbed grassland was developed.
Griffiths et al. (2020) have shown that using an idealized phenological model as an
upper  envelope  allows  mowing  events  to  be  identified  as  deviations  from  the
idealized model.
As opposed to Griffiths et al. (2020), who used a compositing technique to combine
Sentinel-2 and Landsat 8 data into temporally equally spaced time series, we only
use time series of the available cloud-free (pixelwise) Sentinel-2 images.
Another  difference concerns  the determination of  the reference -  the “idealized
phenological model” - used for the calculation of the residuals, which are in turn
used to detect the mowing events. Griffiths et al. (2020) developed an algorithm for
selecting some points to be used to fit a third order polynomial. The result of the fit
is then the reference used for the calculation of the residuals. Explorative studies
conducted at  the beginning of  the test  period yielded comparable  results  when
selecting the points and using third order polynomials, and when simply using the
entire  time  series  and  fitting  second  order  polynomials  to  the  data  points.  An
adjustment to the threshold for the residuals that determine whether a mowing
event has occurred was needed.
Examples of the algorithm results are shown in Figure 12 and Figure 13. The NDVI
time series refer to single pixels within fields in the Sentinel-2 test tile 32TPT, for
which we could obtain exact dates of the mowing events from reliable ground-truth
data.  Cloud  and shadow masking  is  performed  by  combining  Sen2Cor  SCL and
Cloudsen12 (Aybar et al. 2022). As demonstrated by the plots, the observations are

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 30



sufficiently  dense and cloud/cloud shadow masking  performed well,  allowing for
clear detection of most mowing events. Two false negatives are seen in both Figure
12 and Figure 13.
A high-level overview of the first part of the workflow that is deployed to derive an
intermediate version of the mowing dates, event counts and confidence layers is
presented in Figure 14.

Figure  12:  Single-pixel  NDVI  time  series  and  mowing  events  (ground  truth  and
detected) for 2021 (32TPT; WGS84 coordinates: 11.3151°E, 47.5911°N).
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Figure  13:  Single-pixel  NDVI  time  series  and  mowing  events  (ground  truth  and
detected) for 2021 (32TPT; WGS84 coordinates: 11.3103°E, 47.5884°N).
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Figure 14: Processing workflow and pipeline for the GRAMD and GRAME layers part
1:  Source data selection,  pre-processing and cloud masking,  and mowing event
detection.

The mowing detection algorithm is season-based, meaning that a start and end of
season are needed for the analysis of the time series. Extending the time window of
the analysis beyond the true length of the growing season would result in a strong
increase in false positive detections, while the consequence of using too short of a
time window is the strong increase of false negatives (i.e., mowing events are not
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detected, being outside the analyzed time frame). The determination of the season
length has been performed on Sentinel-2 tile basis, exploiting the HR-VPP layers
(see section 3.3.1). By default, we use the 25th percentile of the start of season and
the  75th  percentile  of  the  end  of  season  of  the  herbaceous  surfaces  of  the
considered tile.
NDVI time-series are computed from the Sentinel-2 L2A, observations with clouds or
shadows are removed, and the mowing event detection algorithm described above
is  applied  within  the  determined  vegetation  season.  The  detection  of  mowing
events is limited to a maximum of four events per season.
A high-level overview of the subsequent steps of the workflow is presented in Figure
15.

Figure 15:  Processing workflow and pipeline for  the GRAMD and GRAME layers:
reprojection, shift to yearly timeframes, mosaic, MMU filtering and data export.

While  in  most  tiles  the start  and end of  season are within  a single year,  some
climatic areas can have a start of season in the previous year, combined with an
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early end of season. In those cases, the final product is derived by the combination
of the season-based products, keeping only the dates within the year of interest.
Following  the  steps  described  above,  the  GRAMD layers  in  Sentinel-2  tiles  are
mosaicked to form EEA tiles. Furthermore, GDAL sieve is applied, aiming at reducing
the unavoidable noise in the resulting raster due to fluctuations in time and space of
the  NDVI  values.  The  minimum  mapping  unit  of  0.25  ha  from  the  product
specifications corresponds to 25 pixels. The sieve filter is applied to the tile product
with an extra buffer of 25 pixels, to avoid border effects at the tile boundaries, and
the result is finally cropped back to the EEA tile extension. For known limitations of
the spatial sieving on a multi-valued date laser please refer to section 3.4.5)
Summarizing, the following steps are needed to derive the GRAMD layers:

 Determination of start and end of season using  HR-VPP SOSD and EOSD
layers, masked with HER layers.

 Computation of cloud and shadow masks for dates within the growing season
period.

 Computation  of  NDVI  for  dates  within  the  growing  season  period,  and
application of cloud and shadow mask.

 Application  of  the  mowing  detection  algorithm  on  herbaceous  pixels
(according to HER layer);

 If applicable, re-grouping of mowing events, from season to year.
 Application of the MMU of 25 pixels (0.25 ha);
 Finalizing  steps  (creation  of  the  Cloud-Optimized-GeoTiffs,  color  tables,

metadata).

3.4.3 Grassland Mowing Events (GRAME)
After the application of the sieve filter to the GRAMD layers, the GRAME layer is
derived by counting non-zero events for each pixel.
The following steps are needed to derive the GRAME layers:

 Count of non-zero occurrences in the stack of GRAMD layers (pixelwise);
 Finalizing  steps  (creation  of  the  Cloud-Optimized-GeoTiffs,  color  tables,

metadata)

3.4.4 Grassland Mowing Event Confidence Layer (GRAMECL)
Long gaps in the time series reduce the capability of detecting mowing events (see
also  section  Section     3.4.5  ).  The  confidence  layer  provides  an  indication  of  the
likelihood of not having missed a mowing event and combines it with the individual
confidence of each of the detected events.
The Grassland Mowing Event Confidence Layer (GRAMECL) gives an estimate
of the confidence that the occurrence of the false negative and false positive events
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is minimized. All the  GRAMD layers and the  GRAME layer are required to derive
GRAMECL. The confidence is computed as

where  and  are the confidences of minimizing the occurrence of the false negative
and the false positive events, respectively. Both  and  are calculated in the range
[0,1] (as detailed below), such that the final confidence is in the range , with the
highest value interpreted as the 100% probability that no true mowing event was
missed and no false mowing event was incorrectly detected.
The confidence  is concerned with gaps in the pixelwise time series. These gaps
arise either from the prolonged periods of cloudiness, or due to the intrinsic gap due
to the Sentinel-2 revisit time (as high as 10-15 days in certain areas), and they can
be responsible for missing mowing events (false negatives). This issue is addressed,
and the definition for the confidence  is developed as follows. Supposing that a
given pixel has  available points in the time series, a probability that an event was
missed between any two consecutive points is defined as:

Here,  represents a time gap between the -th and the -th observation in the time𝑖
series, and  is a predefined tolerance window, in this case set to  days. If the time
interval between the two observations is smaller than  according to this definition
the probability that an event was missed increases linearly with the time gap . In
case  the  interval  between  the  two  observations  is  larger  than  the  predefined
window, the probability of a missed event is assumed to be 1. The total probability
that an event was missed is then obtained as a weighted average over all the time
intervals  (for ), namely:

Where  is the total length of the time series (i.e., length of the growing season in
days). The final confidence is obtained as .
The confidence  is concerned with the imperfections in the cloud masking. Namely,
events  such  as  shadows,  haze  or  thin  clouds  can  be  missed  by  the  masking
algorithm,  and  they  can  lead  to  incorrectly  detected  mowing  events  (false
positives).  This  issue  is  addressed,  and  the  definition  for  the  confidence   is
developed as follows. For a given pixel, all the mowing events detected within the
GRAMD layers are iterated over. For an -th mowing event, image filtering is applied
to  its  corresponding  cloud  mask,  using  an  identity  kernel.  More  specifically,  a
custom kernel (filter) is introduced as a normalized 2D identity array of the shape ,
thus defining a relevant area of +/- 30 pixels (300 m) around the pixel of interest.
The result of the filtering is the percentage of clear pixels in the area defined by the
kernel, . The values of  indicate the proximity of the pixel to any nearby clouds,
which in turn lowers the confidence that the pixel in question is a clear pixel, free
from any cloud or shadow. In addition, we compute the tile-based percentage of
thin clouds detected within the Sentinel-2 tile,  (this information is straightforwardly
computed from the generated Cloudsen12 cloud masks). The confidence that the -
th mowing event is not a false positive is then obtained as
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The final confidence follows as the product over all single-day confidences, 
3.4.5 Encountered issues and known limitations
During the implementation and production of the  GRAM layers some issues have
been identified. These can be divided into several subgroups:
MMU-related
The requirement of a Minimum Mapping Unit for the GRAMD layers, albeit resulting
in more uniform results, also yields some issues resulting from the need to apply a
spatial filtering on complex layers presenting dates and counts.

1. The  HER layer used for determining the areas where to apply the mowing
detection algorithm does not have an MMU. It is therefore not possible to
satisfy both the mapping of mowing events for all herbaceous pixels and the
MMU of 0.25 ha of the GRAMD. As a result, the GRAMD still contains patches
below the MMU in particular in small HER patches.

2. The GDAL sieve10 filter needs to be applied independently to each of the four
GRAMD layers. This filter ensures that patches of DOY-values smaller than
the threshold of 0.25 ha (25 pixels) are replaced by the value of the largest
neighboring patch, but only if the size of the neighboring patch is larger than
the threshold. Since this filtering is applied individually to each GRAMD layer
(GRAMD_1,  GRAMD_2,  …),  in  some cases,  the  newly  assigned  value  is
already present in one of the other mowing event date layers at the same
location (i.e. the same pixels). In such cases, it results in date duplication,
where timing of the first mowing event (GRAMD_1) and the second mowing
event (GRAMD_2) share the same DOY. This occurs in approximately 0.4 %
of the herbaceous pixels.

3. The independent filtering of  the  GRAMD layers  explained in the previous
point  can  also  result  in  a  fictitious  increase  in  the  mowing  count  of  the
GRAME layer. Furthermore, the MMU requirement cannot be guaranteed in
the resulting GRAME layer, because the MMU-compliant patches in the single
GRAMD layers could overlap in an “unfavorable” manner. On the other hand,
not re-counting the events after sieving or applying a second filter on the
GRAME would result in strong inconsistencies across the different layers.

Verification and quality control
A quality assessment of the GRAM layer is very challenging due to lack of reliable
and representative ground-truth data across Europe.
Related EO input data
Cloud cover can strongly reduce availability of usable data. This issue is dependent
on  the  region,  with  an  example  of  average  cloudiness  shown in  Figure  16  (a).
10 
https://gdal.org/en/stable/api/gdal_alg.html#_CPPv415GDALSieveFilter15GDALRasterBandH15GDALRasterBandH15
GDALRasterBandHiiPPc16GDALProgressFuncPv
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Sentinel-2 observation pattern and the associated swath borders lead to differences
in  the  data  availability  in  different  regions,  with  some regions  experiencing  an
average  gap as  high  as  10-15 days  (in  combination  with  cloud  coverage).  The
Sentinel-2 observation gaps are shown in Figure 16 (b). These gaps can result in
noticeable border issues/data stripes in the GRAME product (see Figure 17).
In some case the atmospheric correction of the L2A also seems to be a cause of
false positive mowing detection. Further investigations in this regard will be needed.
Cross-year season
For  some tiles  with an early  start  of  the vegetation period,  the mowing season
associated with a reference year may begin in the previous calendar year. Likewise,
the subsequent season, which for the next year, may already start within a given
reference year.  Since the production of  the VLCC products  (incl. the GRAM) has
been conducted in several phases (2017-2021, 2022-2023, 2024) this can result in
incomplete detection of mowing events for the final year in the production interval,
as data from the following season is not yet processed. To ensure consistency and
completeness, it may be necessary to include an additional year of data for tiles
with early season starts and for the final year of the production interval.

Figure 16: Sentinel-2A and - 2B L1C data coverage in 2018. Shown are (a) average
cloudiness, and (b) average gap between cloud-free observations.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 38



Figure  17:  Visibility  of  the  Sentinel-2  swath  borders  and  the  different  swath
coverage  in  the  GRAME  layer  (32TPT;  WGS84  coordinates:  10.63480°E,
47.65318°N).

3.5 HRL Crop Type
This section gives an overview of the methodology employed to produce the layers
Crop Type (CTY) and the Crop Type Confidence Layer (CTYCL).
3.5.1 Input data
Before  the  pixel-based  inputs  are  fed  to  the  model,  minimal  pre-processing  is
applied to transform the raw inputs to a consistent format. Optical Sentinel-2 data is
first cloud-masked based on the official L2A scene classification value to which an
erosion-dilation process is applied to enhance the cloud/shadow mask. Next, a 10-
day compositing window is applied where the median operator is used if multiple
observations  are  available.  Finally,  any  remaining  missing  values  are  linearly
interpolated to prevent gaps in the input data, as the presence of ‘no data’ values
can  lead  to  model  instability.  The  20m  optical  bands  are  resampled  to  10m
resolution by applying a nearest neighbour interpolation.
Sentinel-1  backscatter  is  derived  from  Level-1  GRD  (Ground  Range  Detected)
products, which have been pre-processed to correct for geometric distortions. To
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obtain  meaningful  surface  backscatter  values,  sigma  nought  backscatter  is
calculated from these GRD products using the ellipsoidal Earth model. For enhanced
accuracy,  the Copernicus 30 m Digital  Elevation Model  (DEM) is  also applied to
support  radiometric  correction,  compensating  for  terrain  effects  and  ensuring
consistent backscatter values across varying landscapes. By default, only one orbit
direction (Descending) is kept, as the model is designed to handle a single Sentinel-
1 orbit pass. Combining ascending and descending orbits could mix signals acquired
under  different  viewing  geometries,  potentially  leading  to  a  loss  of  relevant
information. Additionally, using both orbits would significantly increase processing
costs without a clear benefit for model performance. The available observations are
composited with the 10-day windows where multiple acquisitions are averaged. Any
rare  missing  values  are  linearly  interpolated.  Finally,  the  backscatter  intensity
values are converted to decibel values. If there is insufficient Descending data (data
gaps > 10 days, especially happened over northern Europe) also Ascending data is
used.
The Copernicus 30m DEM is used to derive altitude and slope at the pixel level, for
which resampling to the Sentinel-2 10m grid is performed. Finally, the daily mean
temperature variable is  extracted from the original  AgERA5 meteorological data,
aggregated into 10-day intervals, and resampled to the Sentinel-2 10 m grid.
3.5.2 Classification algorithm and inference
The  classification  algorithm  consists  of  a  transformer-based  feature  extractor
followed by a downstream crop classification head (Vaswani et al., 2017; Zerveas et
al., 2021) (Figure 18). These two parts are coupled into one model which is trained
end-to-end based on the available training data. Input to the model are the aligned
inputs  from  the  source-specific  preprocessing  steps.  Time  series  from  optical
Sentinel-2 bands (“B02”, “B03”, “B04”, “B05”, “B06”, “B07”, “B08”, “B11”, “B12”)
and radar Sentinel-1 backscatter (VH and VV) are jointly fed into a transformer-
based  encoder,  which  is  designed  to  automatically  extract  the  most  relevant
features for crop type classification. To better align similar inputs from different
regions in Europe, the encoder model simultaneously has access to the temperature
time series data in order to better differentiate the observed satellite time series
across varying meteorological conditions. The transformer architecture contains an
attention mechanism that learns to extract relevant information within and across
the  different  input  data  streams.  The  original  optical  Sentinel-2  bands,  radar
Sentinel1 backscatter intensities,  and meteorological  time series are directly fed
into the transformer encoder for automated feature extraction. Inputs that lack a
temporal  dimension  are  fed  as  scalars  to  a  dense  encoder  for  simple  feature
extraction. The output of the feature extractor (encoder) part represents a highly
condensed and informative representation of the inputs and because the model is
trained in a fully-supervised manner, the extracted features are already finetuned
towards a crop classification task. Traditional manual feature engineering is hence
not needed in this setup.
Once the features (embeddings) have been extracted, explicit fusion of the different
inputs happens by concatenating these features before feeding them to a multi-
layer perceptron classification head consisting of several stacked dense layers. Final
output of the classification head is a probability of an input belonging to a crop type
label,  with  probabilities  of  all  labels  summing  to  one.  Final  classification  is
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performed by assigning to each 10m pixel from the 19 crop type classes the label
that has the highest probability.
The  model  was  trained  on  an  extensive  in-situ  dataset  of  almost  one  million
samples  compiled  from LPIS-GSA,  LUCAS datasets  and  active  learning  sampling
(Table 3) (Eurostat, 2018). The original LPIS-GSA and LUCAS datasets have each
been fully harmonised towards a common crop type nomenclature (available for
download,  here).  The  harmonized  version  of  each  dataset,  along  with  the
harmonization  procedure  and  the  translation  of  original  crop  type  labels  to
harmonized  labels,  have all  been  published on the  WorldCereal  Reference Data
Module (RDM) and are available for anyone to use. More general information about
this  harmonization  procedure  and  on  how  to  navigate  the  WorldCereal  RDM
application, is available on the  WorldCereal documentation portal. In a next step,
each individual dataset has been subsampled to derive a representative training
dataset at European scale, avoiding as much as possible spatial and temporal bias
and ensuring a label-balanced training dataset. This subsampling was done in an
iterative way for each dataset separately:

1. A  fully  random sample  was  drawn  across  all  crop  types  available  in  the
dataset.  The  initial  sample  size  was  chosen  dynamically  per  dataset
depending on the dataset’s spatial extent and the number of years available
for the region. This first random step ensured the most dominant crop types
for  the  region  were  sufficiently  represented.  Only  grassland  was  ignored
during this initial stage, to avoid massive bias towards this dominant land
cover class.

2. On top of the initial random sampling stage, we identified a number of “focus
crops” for which we ensured a minimum number of samples taken from the
dataset. Focus crops were defined as the target crops to be included in the
eventual  pan-European  crop  type  maps.  In  case  of  cereals,  the  most
dominant  cereal  types  (wheat,  barley,  rye,  oats,  triticale)  were  sampled
separately.  Again,  the  minimum  number  of  crop-specific  samples  were
defined  dynamically  per  dataset,  depending  on  its  spatial  and  temporal
extent.

3. Depending  on  early  model  iterations  and  testing,  additional  samples  for
targeted  crop  types  in  targeted  regions  were  dynamically  added  to  the
training dataset. This for instance included additional wheat and barley data
in Southern Europe.

Finally,  all  training data was merged into a final representative training dataset,
which was used to train a single model that generalizes well across all regions and
can be reused for crop classification on a yearly basis.
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Figure 18: Schematic overview of the crop type model architecture

Table 3:  Overview of the used training points per dataset and year for the CTY
model training
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Country/Region Years Number training points
Austria (LPIS/GSA) 2018, 2019, 2020 160 174
Germany (LPIS/GSA) 2021 77031
Denmark (LPIS/GSA) 2019 39596
Estonia (LPIS/GSA) 2021 16874
Spain (LPIS/GSA) 2019, 2020, 2021 133 830
Finland (LPIS/GSA) 2021 28138
Belgium (LPIS/GSA) 2018, 2019, 2020, 2021 52938
France (LPIS/GSA) 2019, 2020 108 158
Croatia (LPIS/GSA) 2020 12111
Lithuania (LPIS/GSA) 2021 26243
Latvia (LPIS/GSA) 2021 42226
Sweden (LPIS/GSA) 2021 36374
Slovakia (LPIS/GSA) 2021 46609
Europe (LUCAS) 2018 26294
Europe (Active learning) 2019, 2020, 2021 17196

The trained model is deployed as part of an OpenEO11 workflow that covers in an
end-to-end  way  the  cloud-based  access  to  the  required  algorithm  inputs,
preprocessing steps as described above, model inference, and writing of the output
product. Parallelisation is done automatically after tuning the necessary parameters
such as the height and width of individual processing windows. The CTY processing
is based on 20km LAEA sub-tiles of the original LAEA 100km grid.
3.5.3 Post-processing
In the postprocessing pipeline (Figure 19 & Figure 20), each 20km LAEA sub-tile is
postprocessed independently,  except for the temporal  rule-based postprocessing
and the tile padding for GDAL Sieve steps. First, the cropland layer derived from
BVL (classes  ‘Annual  arable  cropland  and  perennial  (permanent)  crops’,  ‘Tree
crops’ and ‘Overlap herbaceous–Tree cover’) is applied as a basic mask, setting
non-cropland pixels as well as out of scope zones. In that step, a correction is also
performed for  pixels  which are  classified as grass  and fodder by the crop type
model but for which the BVL considers them as permanent crops. In that case, the
pixels  crop  types  are  changed  to  the  permanent  crop  class  with  the  highest
probability. Then, remaining cropland pixels are reclassified by performing spatial
smoothing with a gaussian kernel (3x3) on every perclass probability and re-assign
the pixel’s  class  from the new highest  probability.  This  allows to improve class
consistency within fields, as the crop type classifier is pixel-based. The result of this
process gives the intermediate crop type with grass/fodder crops included that is
transferred to the herbaceous layer. The grass/fodder crops locations are removed
from the crop type product for the next steps.
Afterwards, an interannual consistency correction is applied on the full time series
(2017-2021). Products on the same location but for different years are concatenated
together before running the correction. The following three cases are covered:

11 https://openeo.org/
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 When a sequence of crop types consists of only permanent crops, except for
one  year  (that  is  not  in  the  edges)  then  corrects  that  sequence  to  the
permanent crop class that has the maximum accumulated probability over
the sequence. Cases from the edge years are excluded as they may indicate
transitions between arable and permanent crop states. Thus, sufficient data
is lacking to make reliable assumptions.

 When a full sequence (including edge years) of permanent crops does not
have the same crop type, then sets that sequence with the permanent class
that  has  the  maximum  accumulated  probability  over  the  sequence.  This
operation helps by having a more consistent prediction in permanent crop
cases.

 When a pixel of permanent crop class is in-between two arable years, which
could correspond to (temporarily) fallow conditions, this pixel is set to the
background class (0). For the same reasons as described in the first point, the
edge years are not modified by this operation.

Grass and fodder classes are ignored in interannual consistency corrections and are
treated  as  the  background  class.  In  addition,  pixels  that  do  not  correspond  to
cropland for all the years of the analysis are ignored, as again the information is
insufficient to make assumptions.
Thereafter, pixels where the maximum probability of all predicted classes is below
25% are set either to unclassified arable cropland or undecided permanent crop,
dependent to which category the class with the highest probability belongs.
Isolated pixels and small fields are finally cleaned using the GDAL Sieve operation
with a MMU of 0.25 ha and connectivity 4. In addition to obtain more consistent land
cover maps, this operation also ensures a minimum mapping unit of 0.25ha for each
field. To avoid artefacts at the boundaries between tiles, a padding must be added
to each sub-tile before running the spatial cleaning. Once the padding is performed,
the GDAL Sieve operation replaces every field with an area below the threshold of
0.25ha by changing the class to the class of the neighbour field with the largest
area, including the background class (0) in the calculation to remove small, isolated
fields. Pixels that were excluded by previous operations remain excluded after GDAL
Sieve.
Finally, 20km sub-tiles are combined in larger tiles to obtain the final 100km crop-
type and probability products.
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Figure 19: CTY postprocessing pipeline flowchart
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Figure 20: Decision tree of the CTY postprocessing pipeline, outlining the main steps
from  raw  crop  type  probabilities  to  final  output  classes.  For  clarity,  output
categories are simplified to ‘permanent’ and ‘annual’ cropland, as the decision rules
were specifically designed for these classes. Note that spatial operations (defined in
Figure 19) such as spatial smoothing and GDAL Sieve, although they may further
modify crop type labels, are not included in this diagram to maintain readability

3.5.4 Crop Type Confidence Layer
The  Crop  Type  Confidence  Layer  (CTYCL)  provides  a  per-pixel  estimate  of  the
classification  confidence  by  reporting  the  final  probability  associated  with  the
selected crop type label at 10-meter resolution. This probability originates from the
crop  type  classification  model  output,  where  each  crop  class  is  assigned  a
confidence value. However, the final probability values may be modified during the
crop type postprocessing chain, which ensures spatial and temporal consistency.
Specifically, the following chronological steps can influence the confidence values:

 Spatial  smoothing:  A  3×3  Gaussian  filter  is  applied  to  the  per-class
probability output, enhancing spatial coherence across neighbouring pixels.
Pixel classes are re-assigned based on the updated highest probability, which
may differ from the original model output.

 Interannual consistency correction (see also above): When a permanent crop
is missing (excluding edge years) in a single year of an otherwise consistent
time series, or when the sequence includes different permanent crop types,
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the  final  crop  type  class  will  be  adjusted.  In  these  cases,  the  pixel’s
confidence value is recalculated as the average probability of the selected
permanent crop class across the time series.

 GDAL Sieve operation: To remove small, isolated patches, pixel values are
reassigned based on the dominant neighbouring class. If  a pixel’s class is
changed during this step, its probability is updated to reflect the confidence
of the newly assigned class.

Pixels that are reassigned to the background class during postprocessing steps are
assigned the “no cropland” confidence value of 253.
3.5.5 Encountered issues and know limitations
During  the  quality  assurance  process,  minor  violations  of  the  minimum
mapping unit (MMU) requirement were detected in non-cropland areas of  the
crop type layer (2017-2021).Specifically,  the issue arose due to the GDAL Sieve
operation being applied in a single pass. While a single pass may suffice for layers
with a limited number of classes, it is not adequate when more than four distinct
classes are present. In such cases, multiple sieving iterations are necessary to fully
enforce the MMU constraint.
Although the original  implementation included checks to address  this  limitation,
non-cropland pixels were unintentional  excluded from these checks.  As a result,
small  patches  of  non-cropland  remained  below  the  MMU threshold.  The  overall
impact of this issue is minimal, affecting approximately 0.0002% of the total crop
type pixels.
Despite the application of postprocessing steps aimed at improving consistency,
some  implausible crop type sequences remain in the final crop type product
(2017-2021). These arise from the inherent trade-off between enforcing temporal
and spatial consistency. Interannual consistency checks promote temporal stability
across years, while spatial consistency is enhanced using the GDAL Sieve operation.
However, strictly enforcing both constraints would result  in overly homogeneous
patches, undermining the high-resolution detail offered by the 10-meter product.
This challenge is particularly pronounced in heterogeneous and complex landscapes
such  as  those  found  in  southern  Europe,  including  agroforestry  systems  like
Dehesa. In such regions, mixed sequences of permanent and annual crops may still
appear, even if they are agronomically unlikely.
Additionally, the presence of the no-cropland class (label 0) within a sequence can
be explained by various factors. These include the removal of grass/fodder pixels
during postprocessing, reclassification through interannual consistency checks, or
changes  introduced  by  the  GDAL  Sieve  operation.  Such  instances  result  in
discontinuities within the crop type sequences.
Finally, the limited five-year time span of the dataset may not be sufficient to fully
identify  and  correct  all  implausible  sequences.  Future  observations  beyond  this
period could  help  to  better  identify  consistent  crop type sequences and further
reduce inconsistencies.
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3.6 HRL Cropping Pattern
This  section  gives  an  overview  of  the  methodology  employed  to  produce  the
Cropping Patterns (CP) layers  which includes  a comprehensive of  layers  that
provide details on the timing and extent of agricultural practices along five thematic
groups  being Main  crops,  Bare soil,  Secondary  crops,  Fallow land  and Cropping
Seasons.
3.6.1 Input data
The HRL Cropping Patterns (CP) layers entail a wide set of layers relying on both
Sentinel-2 optical and Sentinel-1 SAR-based satellite data. The  HRL CTY layer is
used to define the focus locations of the CP layers generation.
Sentinel-2 and Sentinel-1 backscatter data are pre-processed in a similar way as for
the CTY layer, with some minor differences. In case of Sentinel-2 only a subset of
relevant  bands  is  retained,  including  band  2,3,4,8,  11  and  the  incident  angles
information.  The  latter  is  needed  to  derive  fraction  of  Absorbed  Photosynthetic
Active Radiation (fAPAR) at 10m.
For  the  Sentinel-1  backscatter  both  the  ascending  and  descending  orbits
information  are  combined  to  ensure  maximum  data  availability  required  for
detecting abrupt events like field harvest. Extraction of the data is done at field
level,  resulting  in  timeseries  per  field.  Field  boundaries  are  defined  using  a
delineation algorithm.
3.6.2 Product structure
The  CP portfolio compromises a diverse range of layers, derived from field level
seasonal  information.  The  methodology  used  to  obtain  field  level  seasonal
information and derived cropping pattern layers is shown in Figure 21. In a first
step, the locations for which CP layers are derived are filtered, i.e., only fields that
are delineated and are dominantly covered by an annual crop are retained. The field
delineations are obtained by using a 3D Res-UNet field delineation algorithm which
uses  Sentinel-2  images.  Only  fields  above  the  MMU  of  0.25  ha  and  which  are
classified  as  an  annual  crop  by  the  CTY layer  are  retained.  For  this  subset  of
delineated  fields,  Sentinel-1,  and  Sentinel-2  timeseries  are  retrieved,  which  are
necessary inputs for the harvest and emergence detection. The detected harvest
and emergence events are used to derive a maximum of two growing seasons per
year based on expert rules. The workflow results in several CP layers, which are
subdivided into 5 thematic themes:

 Main crops

 Bare soil

 Secondary crops

 Fallow land

 Cropping Seasons
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All vector-based  CP layers are rasterized to 10 m spatial resolution to align with
HRL  CTY layer.  Although  the  original  CP layers  are  derived  exclusively  from
delineated parcels larger than the defined MMU of 0.25 ha, a final spatial alignment
with the  HRL CTY layer is required to ensure consistency across product layers.
This  alignment  step  involves  clipping  the  field-based  CP outputs  to  the  CTY-
classified  (pixel-based)  annual  cropland extent.  As  a  result,  some  CP outputs—
originally MMU-compliant—may appear as smaller spatial fragments due to partial
overlap at field boundaries. While this may produce local patterns below the MMU
threshold, these are a by-product of spatial alignment rather than the initial  CP
derivation. Reapplying a sieving operation at this stage to enforce the MMU would
risk  removing  valid  and  relevant  CP information,  particularly  in  transitional  or
fragmented agricultural landscapes. Moreover, the clipping step alone already leads
to some loss of CP content, and further filtering would compound this loss.
In the following sections,  the methods used to delineate growing season(s)  and
derive the corresponding CP layers are described.

Figure 21: Schematic overview of cropping pattern products generation.

3.6.3 Growing season delineation
The growing season delineation at field level  forms the basis  for the  CP layers
generation. The methodology used to determine the growing season delineation is
shown in Figure 22. The onset and end of the season is based on the detected
emergence and harvest  events  (see sections below),  respectively.  The detected
emergence and harvest events are used in expert rules to determine the growing
seasons (see sections below).
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Figure 22: Schematic overview of the growing season delineation.

3.6.3.1 Emergence detection

The inflection behavior of the spectral signal around the moment of emergence is
used to detect emergence events. As spectral signal, daily fAPAR values obtained
from the CropSAR technology are used. CropSAR is a deep learning method that
allows to fill-in the cloud gaps in fAPAR timeseries using the relationship between
Sentinel-2 fAPAR and Sentinel-1 backscatter data (CropSAR, 2024; Piccard et al.,
2023). Optical fAPAR data were preferred to Sentinel-1 derived features since fAPAR
is  not  influenced  by  soil  structure  and  moisture  content  around  emergence
(Khabbazan et al, 2019). Additionally, the change of fAPAR around the emergence
period is quite gradual. A rule-based approach was used to determine emergence
events as deep learning methods depend on a substantial amount of training which
were not available.
Field data on emergence dates (+- 200) of  agricultural  fields,  located mainly in
Belgium,  were  used  to  investigate  the  behavior  of  the  fAPAR  signal  around
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emergence. From this, generalizable rules and threshold could be defined to allow a
robust and consistent emergence detection as shown on Figure 23. The values of
the parameters are obtained by applying a Monte Carlo simulation. Emergence is
detected shortly after the occurrence of a slope inflection of the CropSAR timeseries
(Figure 23), this is also confirmed in literature (Gao et al., 2017; Gao et al., 2021).
Some additional parameters are used to check if the slope inflection is related with
a clear seasonal signal (i.e., amplitude, duration until season peak, …). Within the
literature  it  is  also  clearly  confirmed  that  emergence  typically  occur  after  an
inflection of the time series from optical derived data (Gao et al., 2017; Gao et al.,
2021). The detected emergence date corresponds with the unfolding of the first
leaves of the crop on the field.

Figure 23: Different parameters selected for detecting an emergence event out of a
seasonal profile.

3.6.3.2 Harvest detection

Harvest is defined as the moment of total removal of standing biomass from the
field. For the harvest detection, a sequential neural network is trained to identify a
harvest  event  out  of  set  of  selected  satellite  derived  features.  600  fields  with
information  on  harvest  date  (both  on  the  main  season  and  for  some  on  the
secondary season) are used for model training. Most of these fields are in Belgium,
Italy, Greece, and Austria and cover a wide range of the most common cultivated
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crops. The model is trained such that a detection of a harvest event aligns with the
agreed definition on harvest. The following spectral features are used in the harvest
detection algorithm:

 fAPAR (CropSAR)
 Sentinel-2 Normalized Burnt Ratio 2 (NBR2) (Alcaras et al., 2022)
 VH/VV in decibels derived from Sentinel-1 backscatter.

The selected features complement each other. The VH/VV ratio does respond more
to the structural changes of the field at harvest, while the other two features do
react more on the biophysical change (Meroni et al., 2021; Van Tricht et al., 2018).
The NBR2 is added as it is particularly sensitive for harvest at low fAPAR values.
This typically occurs in cover crops or maize that are in a far stage of senescence at
harvest. In such case, the fAPAR signal is not enough to properly detect a harvest
event and the signal received from VH/VV is not that clear anymore due to the
collapse (loss of structure) of the crop. All the different features are brought on a 6-
daily temporal scale, in case of the NBR2 a Whittaker smoother has been applied to
fill-in the cloud induced gaps. Gaps in Sentinel-1 VH/VV are linearly interpolated.
The  6-daily  time  series  of  CropSAR,  NBR2  and  VH/VV  are  used  in  the  harvest
detection sequential neural network model.
3.6.3.3 Season delineation

For the season delineation, all the emergence and harvest events in a period of 6
months before and after the reference year of interest are retained. This six-month
period is added to also be able to detect seasonalities that do not fall within the
year boundaries (e.g., secondary crops and winter cereals). In the first step, the
emergence  and  harvest  detections  are  cleaned  and  associated  with  a  single
seasonality to categorize it as either a main or secondary season. A series of expert
rules, derived from an examination of seasonal boundaries at the European level in
conjunction  with  United  States  Department  of  Agriculture  (USDA)  crop  calendar
data,  are  used  for  labeling  the  seasons  (see  Table  4).  These  rules  are  fully
independent from the  CTY crop labels to avoid error propagation. For both main
and secondary crops, some further sub-seasonality labelling is done to differentiate
between winter & spring crops and secondary crops growing before or after the
main  growing  season  of  that  reference  year.  Each  of  these  sub-seasonality
categories  have  different  periods  in  which  they  can  occur  (Table  4).  The  sub-
seasonality categorization can further assist in prioritizing the final selection of the
labelled seasons as main or secondary season if multiple seasons conflict within one
of these categories.
Additionally, also regional dependent seasonal bounds are defined due to different
growing season periods within Europe. Therefore, Europe has been divided into two
zones based on the Metzger environmental zones, which is based on variations in
climatic conditions across the continent, for seasonal labeling (Metzger et al. 2018).
The translation of the original environmental zones into the two zones is shown in
Table  5.  The  subdivision  is  mainly  dividing  more  temperate/cold  climates  from
warm/Mediterranean climates within the European continent. In the latter, onset of
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the main growing season is substantially earlier compared to the colder climates
where temperature delays the season onset.
The expert rules for season labelling are described below:

 Emergence and harvest are chronologically linked together into a season.
 A season that ends before the start of the reference year or starts after the

end of that year, is removed.
 Seasons with a length below 40 days or above 365 days are removed.
 The remaining seasons are labelled into one of the following options (based

on the defined limits in Table 4):
o Spring crop
o Winter crop
o Secondary crop before the main season
o Secondary crop after the main season
o No labelling possible (if it does not fit to one of the above categories)

 If  a  season  falls  in  the  seasonal  limits  of  two  types  of  sub-seasons,  the
following labelling priority is given:

o Overlap between winter and spring crop season:
 Days  overlap  season  in  spring  crop  season  period  >  days

overlap in winter season period → spring crop.
 Days  overlap  season  in  spring  crop  season  period  =  days

overlap in winter season period → spring crop.
 Days  overlap  season  in  spring  crop  season  period  <  days

overlap in winter season period → winter crop.
o Overlap between spring crop and secondary crop after main season →

spring crop.
 Eventually,  the final  seasons used for  generating the layers  on main and

secondary  crops  are  defined  as  follows  if  there  is  a  conflict  (multiple
occurrences) in one of these categories:

o Main season:
 Spring crop season > winter crop season

o Secondary cover crop season:
 After the main season > before the main season
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If no main season is detected for a specific field in a certain reference year also no
secondary crop season information is provided.
Table  4:  Expert  rules  with  seasonal  limits  for  season  delineation  based  on
emergence and harvest input.
Type season Zone Sub-seasonality Emergence 

period
Harvest period

Main season 1 Winter crop 15/08(year-1)→ 
30/04(())

01/(06_{()}) → 15
(;/09_{(r)})

Main season 1 Spring crop (01/04_{(}/
07_{(})

(01/07_{()}/1)
(1/12_{(})

Main season 2 Winter crop 15 
(/08_{()}/03_{(})

(01/04_{(}/
08_{(})

Main season 2 Spring crop 01/(03_{()}/
07_{()})

(01/06_{(}-)()/
01((1))

Secondary season 1 Before main 
season

01/01 (.()))→ 
(30/04_{()}))

01/01 (.()))→ 
(30/04_{()}))

Secondary season 1 After main season 1 (.5.)/0 
(7_{()}))→ 
(30/04_{(}))

1 (.5.)/0 
(7_{()}))→ 
(30/04_{(}))

Secondary season 2 Before main 
season

(01/01_{()})(/
03_{(y e a r)})

(01/01_{()})(/
03_{(y e a r)})

Secondary season 2 After main season 1 
(5/06_{()}/03_{(+
1)})

1 
(5/06_{()}/03_{(+
1)})

Table 5: Translation of Metzger environmental zones into a zone used with the same
season delineation limits.
Environmental zone (Metzger) Zone
Alpine north 1
Boreal 1
Nemoral 1
Atlantic north 1
Atlantic south 1
Continental 1
Atlantic central 1
Pannonian 2
Lusitanian 2
Anatolian 2
Mediterranean mountains 2
Mediterranean north 2
Mediterranean south 2
Macaronesia 2
Arctic 1
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3.6.4 Confidence layers
For most of the CP layers confidence information is provided and is based on the
uncertainty of the emergence and harvest detection used to delineate the growing
season(s).  This  confidence  is  calculated  based  on  the  uncertainty  of  satellite
observations at the date of emergence or harvest. The CropSAR technology used to
fill-in cloud induced gaps of fAPAR provides this uncertainty interval of  fAPAR at
these dates, as the (10^{}) (q10) and 90th (q90) percentile. The emergence and
harvest detection algorithm use the q50 values for their predictions. The emergence
or  harvest  uncertainty  in  days  is  based  on  the  upper  (q90)  and  lower  (q10)
confidence of fAPAR at the event (i.e., emergence or harvest) date and the slope of
fAPAR at event date (denoted as slope ) (see equation and Figure 24 below):

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 55



Figure 24: Schematic overview on the parameters used to calculate the uncertainty
at an event data (i.e., emergence or harvest). Event date is in this example, an
emergence.

In rare cases, this approach does not yield reliable results, for example when the
slope around emergence or harvest is nearly zero. In these cases, the uncertainty is
calculated as follows.

1. In case of emergence, the uncertainty is the number of days after the event
to  reach the q50 fAPAR value at  emergence by  the  q10 time series.  For
harvest,  the uncertainty in days can be estimated by the number of days
before the harvest event that the q10 time series reach the q50 fAPAR value
at harvest.

2. In  case  of  emergence,  the  uncertainty  in  days  can  be  estimated  by  the
number of days before the emergence event that the q90 time series reach
the  q50  fAPAR  value  at  emergence.  For  harvest,  the  uncertainty  is  the
number of days after the event to reach the q50 fAPAR value at harvest by
the q90 time series.
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3. The total uncertainty is then determined by summing up the number of days
determined in (1) and (2).

Note  that,  during  cloudy  periods,  the  confidence  interval  will  increase  as  the
uncertainty on the fAPAR will also increase.
For  most  CP layers  the  uncertainties  correspond  to  the  uncertainties  that  are
derived from the emergence and harvest date of the specific season. And exception
is the  Fallow Land Presence Confidence Layer (CPFLPCL) which is based on
the Crop Type Confidence Layer (CTYCL) (which is by default below 35 for fallow
fields) and set to:

The lower the CTYCL of a fallow field the higher the CPFLPCL. In case the CTYCL is
below 10, the confidence for fallow land presence is confined at 100.
The  Fallow Land Duration Confidence Layer (FLDCL) can only be calculated
when a harvest date is utilized to determine the start or end of a fallow land period.
The uncertainty on the harvest date is used to provide information on the fallow
land duration confidence. If there is no harvest event on the fallow field, a flag is
assigned  to  the  layer.  Like  for  the  FLDCL layer,  the  sum  of  the  uncertainties
(whenever  present)  is  taken  over  the  five-year  period  to  determine  the
corresponding uncertainty.
3.6.5 Derivation of Main Crops, Bare Soil, Secondary Crops, Fallow
Land and Cropping Seasons layers
Based on the delineation of the growing season and the uncertainty of the fAPAR
the raster layers for the five layer groups Main Crops, Bare Soil, Secondary Crops,
Fallow Land and Cropping Seasons can be derived. This section provides further
details on how this has been implemented.
3.6.5.1 Main Crops

For all  fields that do have a delineated main season and are not designated as
fallow land (see section 3.6.5.4), the following layers based on the main seasonality
are derived:

 Main Crop Harvest (MCH) + Confidence Layer (MCHCL)

 Main Crop Emergence (MCE) + Confidence Layer (MCECL)

 Main Crop Duration (MCD) + Confidence Layer (MCDCL)

The  first  two  layers  are  directly  derived  from  the  emergence  and  harvest
information  of  the  delineated  season.  The  confidence  is  derived  from  the
uncertainty on the emergence or harvest date. The  Main Crop Duration is the
difference  in  days  between  the  emergence  and  harvest  of  the  season.  The
confidence of the crop duration is the average of the confidence on the emergence
and harvest date.
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3.6.5.2 Bare soil

The Bare Soil (BS) layers define the number of days that a field is left bare before
and after the main season. If no main season is detected for a specific field or the if
the field is designated as fallow land (see section 3.6.5.4) no bare soil information is
provided). The following two bare soil layers are produced:

 Bare Soil Before main season (BSB) + Confidence Layer (BSBCL)

 Bare Soil After main season (BSA) + Confidence Layer (BSACL)

The duration of the bare soil period following the main season is determined by
calculating the number of days between the harvest of the main season and the
subsequent  emergence  date.  If  there  is  no  emergence  date  within  the  same
reference year as the product, the bare soil period ends on the last day of the year.
If the main season ends after the end of the reference year, no bare soil period after
the main season is provided. Conversely, for the bare soil period preceding the main
season, the days between the last harvest date prior to the main season and the
emergence  date  are  determined.  If  there  is  no  preceding  harvest  date  in  the
reference year, the bare soil period begins on the first day of the year. If the main
season commences before the reference year, no bare soil period is considered, as
it is only calculated for the year in which the layer is produced.
The confidence of the bare soil layer before and after the main season layers is
determined by considering the uncertainty in the emergence or harvest dates that
define  the  bare  soil  period.  The  average  uncertainty  in  the  emergence  and/or
harvest dates is used to calculate the uncertainty in the bare soil layers. If the bare
soil  period begins at  the start  of  the reference year  and does not  align with  a
harvest event, only the uncertainty in the emergence of the main season start is
considered  for  the  calculation  of  the  bare  soil  period  before  the  main  season.
Conversely, if the bare soil period ends at the end of the reference year and does
not align with an emergence event, only the uncertainty in the harvest event from
the main season is considered for the calculation of the uncertainty in the bare soil
period after the main season.
3.6.5.3 Secondary Crops

The  Secondary Crop (SC) season typically occurs during the off-season period.
Typical secondary crops are cover crops, which are directly planted after the main
season. These crops are often used to enhance soil quality, prevent soil erosion, and
provide various other beneficial effects (Fendrich et al., 2023). As a result, in the
season  delineation labeling  (see section  3.6.3),  priority  was  given  to  secondary
seasons that occur after the main growing season. If only one secondary growing
season is delineated that starts in winter or early spring within the reference year,
that  season  will  be  classified  as  a  secondary  season.  The  following  layers  are
available for secondary crops, only if the field has a main season and a secondary
season and is not classified as fallow land (see section Fallow land):

 Secondary Crops Type (SCT)

 Secondary Crops Emergence (SCE)
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 Secondary Crops Duration (SCD) + Confidence Layer (SCDCL)

The first layer classifies the detected secondary crops into four categories:
 Short summer

 Long summer

 Short winter

 Long winter

The categorization of crops is determined by two parameters: the duration of the
secondary season and the timing of  its  emergence.  Through cluster  analysis  of
these  parameters,  secondary  crops  can  be  classified  into  the  described  four
categories. The distinction between short and long growing variants is based on the
length of the season: if it is less than 100 days, it is considered short; otherwise, it is
classified  as  long.  Additionally,  a  secondary  crop  that  emerges  after  the  main
growing season and before September is labeled as a summer variant,  all  other
cases are classified as winter variants. Typically, a secondary crop season preceding
the main season is categorized as a short growing winter variant.
The SCE layer can be directly derived from the emergence date of the delineated
secondary crop season. The secondary crop season duration is calculated based on
the difference in days between the harvest and emergence date. The confidence of
the SCD is the average of the confidence on the emergence and harvest date.
3.6.5.4 Fallow land

Fallow  land  is  defined  as  agricultural  land  where,  temporarily,  no  agricultural
activity takes place. The detection of fallow land is performed on a subset of the
parcels used for the CP, i.e. only those fields where on average the CTY confidence
within the field is below 35, are assessed.
Following layers are generated for fallow land:
➢ Fallow Land Presence (FLP) + Confidence Layer (FLPCL)
➢ Fallow Land Duration (FLD) + Confidence Layer (FLDCL)
Fallow land presence classification method

The workflow applied to determine fallow land presence is shown in Figure 25. After
the selection of parcels with an average annual crop type confidence below 35, the
number and sequence of detected harvests and emergences in combination with
the  maximum fAPAR value  are  evaluated.  The  evaluation  of  this  parameters  is
solely done within the reference year. When a harvest event is detected on a field it
is evaluated if it occurs before a zone-specific allowed harvest date. This zonation
aligns with the two zones used for  the season delineation (see section Growing
season  delineation).  The  allowed  harvest  date  is  set  before  April  1st  for  fields
located in zone 2 (see Table 5) and before May 1st for fields located in zone 1. If the
harvest  falls  earlier,  then this  allowed harvest  date is  likely  the  harvest  of  the
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previous year  sown secondary crop.  In  total  8 cases were defined to which the
selected parcels could be classified as fallow land, as described below:
No emergence no harvest: There is no harvest nor emergence detected on the
field. These are fields where there is clearly no agricultural activity, and they can
thus be considered as fallow.
Harvest: There is only one harvest event detected on the field and it occurs before
the allowed harvest date. Since there is only one harvest that can be associated
with a previous year secondary crop and no emergences or harvests are detected
after the allowed harvest date the field is considered as fallow.
Emergence: There is only one emergence detected on the field, since there is no
harvest detected on the field, the emergence can be associated to fallow vegetation
emerging on the field.
Harvest-Emergence: One harvest  date is  detected before the allowed harvest
date followed by an emergence. The harvest can be associated with a previous year
secondary  crop  and  the  emergence  can  be  associated  to  fallow  vegetation
emerging on the field.
Emergence-Harvest: An emergence is followed by a harvest event and the length
between these two events is at least 252 days (i.e., 9 months). The emergence can
be associated with fallow vegetation emerging on the field, a harvest after 9 months
is allowed since fallow vegetation can die back in winter period which can be falsely
detected as a harvest.
Harvest-Harvest: There are two harvests detected on the field before the allowed
harvest date and the maximum fAPAR after the second harvest is below 0.35. In this
case the harvest can be associated with a previous year secondary crop followed by
a period of bare soil/very sparse fallow vegetation growth,  the field is  therefore
considered as fallow.
Harvest-Harvest-Emergence: In the case two harvest events follow each other
closely (i.e.,  they are less than or equal to sixty days apart) and an emergence
follows these harvests. In this case the harvests can be associated with a previous
year secondary crop followed by a period of fallow vegetation emergence, the field
is therefore considered as fallow.
Emergence-Emergence: There are two emergences detected on the field but the
maximum fAPAR value stays below 0.35. These fields have bare soil/very sparse
fallow vegetation growth and are therefore considered as fallow.
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Figure  25:  Workflow  for  fallow  land  presence  classification.  With  CP:  cropping
pattern, CTYCL: confidence value of CTY layer. For the Metzger based environmental
zonation see Table 5.

For details on the calculation of the  Fallow Land Presence Confidence Layer
(FLPCL) please refer to section
Fallow duration

The Fallow Land Duration (FLD) layer is defined as the sum of the yearly  FLD
over  the  last  fiveyears  period.  The  yearly  fallow  land  duration  is  calculated  as
follows:
➢ If a harvest date determines the start of the fallow land period, the length starts
at that date until the end of the year.
➢ If the harvest defines the end of the fallow land period, the length starts at the
first day of the year until the harvest date.
➢ If there is no harvest detected, the length is set to 365 days.
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3.6.5.5 Cropping Seasons

The  Cropping Seasons (CL) layers provide some information on the crop type
rotation over a three-year period or within a single reference year and consist of the
following two layers:

 Cropping Seasons Yearly (CSY)

 Cropping Season Types over three years (CST)

The CSY layer establishes the number of growing seasons in one year (max. 2) for
each selected field used in CP layers generation (only annual crops) and excluding
fallow land. If both a secondary season and an annual crop type are identified, it will
be counted as two growing seasons. If no secondary season falls within the seasonal
limits, but it is classified as an annual crop type, it will be counted as one growing
season for that year. In all other scenarios, it will be classified as having no cropping
season within the reference year.
The CST layer is solely based on the CTY layer and only considers the annual crop
type labels for counting crop rotation. For each reference period of three years, this
layer is generated by considering the two years prior to the end of the reference
period.  As a consequence,  the layer is  only available from the reference period
P2017-2019 onward. During any three-year reference period, the number of unique
crop type labels is counted and can range from 1 to 3. Permanent crop labels are
not included in the count, and if all three years consist of permanent crops, a value
of zero will be assigned. There is one exception to the counting of crop type labels:
If the unclassified arable crop land label appears in any of the three years, it will be
excluded from the count to avoid the risk of double counting the same crop type. If
the entire period is classified as unclassified arable crop land, the count will be set
to one.
3.6.5.6 Encountered issues and known limitations

A  limitation  of  the  Fallow Land  (FL) layers  is  that  only  a  subset  of  fields  is
considered for fallow land evaluation. Therefore, fallow fields that are not covered
by the annual crop type masked parcel delineation product will not be examined
and therefore not detected. Furthermore, reference data on fallow land is scarce
and often a harmonized definition of fallow land is absent, which makes it hard to
evaluate the product. Therefore, it was decided to work with some thematic rules
that fit with the expected behavior of fallow land.
The expert rules are defined to determine crop seasonality (section Section     3.6.3.3  )
for  most  cases.  However,  there  are  still  some  specific  cases  that  may  not  be
addressed by the seasonal limits defined by the set of expert rules. In such cases,
additional checks are needed to determine if  the detected seasonality should be
included in the CP layers. Some of these cases are discussed below.
In  the  case where a  season does  not  correspond with  any main season  in  the
reference year,  it  is verified if  there is still  a season onset after the anticipated
period of emergence for spring crops and a harvest event before the conclusion of
the reference year. By applying this rule, the seasonality of vegetables that are
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planted late in the season are included. However, most of these cases involve fallow
land with minimal seasonality and are categorized under fallow land layers (see
section Section     3.6.5.4  ).
In the case where multiple spring crops are cultivated on a field, the first detected
season is  considered as the main season and the second one as the secondary
season. In the case two secondary crop seasons occur after the main season, the
first one is selected as secondary season. Other exceptions can occur but are not
described due to their rare occurrence.
Overall, the applied expert rules cover the most common seasonalities of annual
crops, but some limitations exist. For example, in case of too short growing season
lengths, some vegetables could be excluded from CP layers generation. However,
shortening the allowed seasonal length would include much more expectations in
the  CP layers, leading to a less reliable product.  Moreover, that the shorter the
season  the  more  errors  could  occur  in  the  emergence  and  harvest  detection,
resulting in errors in the seasonal delineation.
In the case of double cropping seasons, there are instances where the seasonal
labelling conflicts with the crop type label in the CTY layer. For instance, if a winter
cereal  is  followed by maize,  the  CTY label  might classify it  as maize,  while the
season delineation designates the winter cereal season as the main season. This
situation is more likely to occur in the southern regions of Europe where the climate
allows for double cropping.  In these areas,  it  is  also possible for the harvest  of
winter  cereals  to  coincide  with  the  secondary  crop  harvest.  In  such  cases,  it
becomes challenging to differentiate between winter cereals and secondary crops,
leading to the possibility of the secondary crop being considered the main season.
However, if a spring main crop signal is detected subsequently, it will be recognized
as the main season.
In addition to the challenges associated with labeling seasons,  issues may arise
from the emergence and harvest detection processes themselves. For some specific
crops like sunflowers,  it  is observed that often the seasonal signal  is too subtle
(Figure 26) to  allow any harvest  detection.  This  limitation has been particularly
noted during the growing season of 2019 in southern Spain. No training data on this
specific crop in this area is available to be able to improve the harvest detection
algorithm.

Figure 26: Example of CropSAR fAPAR signal for a sunflower field in southern Spain
in 2019. The black lines show the detected emergence dates within the time series.
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Additionally,  in  certain  scenarios,  consecutive  emergence  events  without  a
corresponding harvest  event  in  between,  or  vice  versa occur.  To address  these
situations, additional rules based on a bare soil indicator are developed to be able
to select  the correct  emergence or  harvest  dates  for  linking seasons.  However,
some cases may still lead to the selection of incorrect emergence or harvest dates,
resulting in outliers in seasonal length (either too short or excessively long) or even
seasons that fall outside the allowed season boundaries. This issue is particularly
prevalent  when  a  secondary  crop  is  planted  immediately  after  the  main  crops
harvest,  or  when  the  delineated  parcel  is  a  multi-cropped  field,  leading  to
emergence/harvest signals that reflect this multi-cropping behavior. Furthermore, in
northern regions of  Europe where a permanent  snow cover  occurs  before main
crops are harvested, the harvest may not be accurately detected, in these cases it
impossible to identify any season even when crop cultivation does occur.
Finally, some limitations in the  CP layers arise from the filtering of annual crops
based on the  HRL CTY classification. Specifically, if a field is delineated but not
classified as annual cropland in the CTY layer, no CP information is generated for
that field—even in cases where annual cropping activity may actually be present.
Conversely,  false  positives  in  the  CTY annual  crop  classification  can  introduce
artefacts into the  CP layers by triggering extraction where no actual annual crop
exists.
On the other hand, some annual cropland pixels in the CTY layer lack corresponding
field  delineations,  resulting  in  missing  CP outputs.  At  the  Pan-European  scale,
approximately 10% of pixels classified as annual crops do not intersect with any
delineated  field  and  therefore  cannot  be  assigned  CP information.  This  loss  is
primarily due to two factors:

 5% is due to pixel-level misalignment at field boundaries, regions with more
small and elongated fields will have more data loss.

 The remaining 5% stems from larger spatial mismatches between the extent
of  CTY classified  annual  crop  areas  and the  delineated  field  geometries.
These  discrepancies  are  most  pronounced  for  crop  types  with  lower
classification  accuracy—such  as  fresh  vegetables,  other  cereals,  and
unclassified arable crops.

In contrast, for other (and most common) annual crop classes, around 95% of pixels
are successfully aligned with the delineated field boundaries, ensuring reliable  CP
generation for these key crop types. For these crop types, the pixel misalignment at
the field border is the main reason for this 5% loss of CP output.
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4. List of abbreviations
Abbreviation Name
ADs Applicable Documents
AOI Area of Interest
BCD Broadleaved Cover Density
BVL Base Vegetation Layer
CAP Common Agricultural Policy of the European 

Union
CCD Coniferous Cover Density
CDD Crop Diversity and Diversification
CL Confidence Layer
CLC CORINE Land Cover
CLC+ CORINE Land Cover +
CLMS Copernicus Land Monitoring Service
CORINE Coordination of information on the environment
CROP Cropland Products
CT Crop Type Layer
CTY Crop Types
CTYCL Crop Types Confidence Layer
DEM Digital Elevation Model
DIAS Copernicus Data and Information Access 

Services
DLT Dominant Leaf Type
DLTC Dominant Leaf Type Change
DLTCL Dominant Leaf Type Change
DTW Dynamic Time Warp
EEA European Environment Agency
EEA38 The 32 member and 6 cooperating countries of 

the EEA
EO Earth Observation
EPSG European Petroleum Survey Group
ESYRCE Encuesta sobre Superficies y Rendimientos 

Cultivos
ETC European Topic Centre
EU European Union
EU27 The 27 member states of the EU
EVI Enhanced Vegetation Index
FADSL Forest Additional Support Layer
fAPAR fraction of Absorbed Photosynthetic Active 

Radiation
FL Fallow Land
Fmask Function of mask
FOR Forest Products
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Abbreviation Name
FWC Framework Contract
F-Score Harmonic mean of the Producer’s and the User’s 

Accuracies
FTY Forest Type
GDAL Geospatial Data Abstraction Library
GRA Grassland Status Layer
GRAC Grassland Change Layer
GRACL Grassland Confidence Layer
GRACCL Grassland Change Confidence Layer
GRAM Grassland Mowing Events
GRAMCL Grassland Mowing Confidence Layer
GRAMD Grassland Mowing Dates
GRAME Grassland Mowing Events
HBS Harvest and Bare Soil
HER Herbaceous Cover Layer
HR High Resolution
HRL / HRLs High Resolution Layer / High Resolution Layers
HRL VLCC High Resolution Layer – Vegetated Land Cover 

Characteristics
ID Identification Number
JRC Joint Research Centre
KOM Kick-Off Meeting
L2A Level 2A
LAEA Lambert Azimuthal Equal Area projection
LAI Leaf Area Index
LC Land Cover
LiDAR Light Detection and ranging
LPIS Land-Parcel Identification System
LU Land Use
LUCAS Land Use/ Cover Area frame Survey
LULUCF Land Use, Land Use Change and Forestry
MMU Minimum Mapping Unit
NDVI Normalised Difference Vegetation Index
NBR2 Normalized Burnt Ratio 2
OA Overall Accuracy
OpenEO API to connect different programming languages 

to EO cloud back-ends
PA Producer Accuracy
PLOUGH Ploughing Indicator
PPT PowerPoint Presentation
PU Production Unit
Rr Recognition Rate
SAR Synthetic Aperture Radar
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Abbreviation Name
SC Specific Contract
SCL Scene Classification Layer
Sen2Cor Processor for Sentinel-2 Level 2A product 

generation
SIGPAC Sistema de Información Geográfica de Parcelas 

Agrícolas
TBD To Be Discussed / Defined
TCD Tree Cover Density
TCCM Tree Cover Change Mask
TCDCL Tree Cover Density Confidence Layer
TCPC Tree Cover Presence Change
TCPCCL Tree Cover Presence Change Confidence Layer
TempCNN Temporal Convolutional Neural Network
UA User’s Accuracies
USDA United States Department of Agriculture
UTM Universal Transverse Mercator
VHR Very High Resolution
VPP PPI Vegetation Phenology and Productivity 

parameters – Plant Phenology Index
XML Extensible Markup Language
WEkEO Copernicus DIAS reference service for 

environmental data, virtual environments for 
data processing
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6. Annex I -  Aggregation rules for 20m
layers TCPC, DLTC and GRAC
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7. Annex II TCPC MMU filtering
The Tree Cover Presence Change is defined with a Minimum Mapping Unit (MMU) of
1 ha. The implementation of an MMU requires several choices and steps which are
documented here. The detected gains and losses are initially aggregated to 20m
according  to  the  rules  defined  in  Annex  II.  Holes  smaller  than  the  MMU  and
completely surrounded by either loss or gain are filled according to majority of their
surroundings, in situation where no majority can be found the tree cover loss class
dominates. Change patches smaller than the MMU are removed in such a way that
tree cover gains are recoded as class 10 (unchanged areas with tree cover) and tree
cover losses are recoded as class 0 (unchanged areas without tree cover).
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