
IT Architecture Principles and
Implementation Guidelines

Copernicus Land Monitoring Service

European Environment Agency (EEA)

2025-04-08

Author: European Environment Agency (EEA)

Date: 2025-04-08

Version: 1.4b

Index

1. Preface...1
2. Introduction..1
3. Scope and key terms..2
4. Principles..3

4.1 Architecture...4
4.2 Reproducibility..5
4.3 Reusability...7
4.4 Transparency...7
4.5 Maintainability...8
4.6 Observability...10
4.7 IT security..11
4.8 Resilience..12

1. Preface
The EEA (European Environment Agency) CLMS IT architecture principles are
indicative and must be evaluated in all IT deliverables.

2. Introduction
The IT architecture principles set the overall framework for the EEA CLMS IT
landscape. The principles are designed to ensure a consistency in deliverables and
at the same time support the CLMS program’s IT vision and -strategy. The principles
are designed to ensure that IT solutions are coherent, can be further developed and
operated efficiently, that they support business needs and security requirements,
etc.
A uniform approach is required to ensure the coherency goal. The EEA CLMS
programs IT applications may depend on and interact with each other. It is therefore
important that IT solutions focus on connectivity and potential synergy effects to
ensure continued coherence in the IT landscape.
Any application provided may be developed, operated, maintained, and further
developed by a supplier different from the supplier who delivered the initial
application. Therefore, efforts must always be made to be supplier independent.
Other suppliers must be able to continue working from where the previous supplier
left off.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 1

3. Scope and key terms
The scope of the EEA CLMS IT architecture principles is IT solutions to be delivered
to the CLMS. The solutions delivered will include functionalities required to support
the program (for Example, maintain and operate CLC+ Core multi-use grid-based
Land Cover/Land Use hybrid data repository). This includes also the dependencies of
these IT solutions to other internal or external systems.
Definition of the key terms used within this document:
Application Programming Interface (API) - is a set of protocols, tools, and
definitions that allow different software applications to communicate with each
other. It defines the methods and data structures that developers can use to
interact with a service or application, facilitating the exchange of data and
functionality.
Automation scripts - refers to sets of instructions, written in scripting languages
designed to automate repetitive tasks and processes. These scripts streamline
workflows, reduce the need for manual intervention and ensure consistency and
efficiency in performing tasks.
Client specific software/IT solution - is a custom-designed software/solution that
is tailored to meet the unique needs, requirements, and preferences of a particular
client or organization.
Commercial software - software products that are developed, marketed, and sold
for profit by software companies or developers. Commercial software is typically
licensed to end-users, who must purchase it or pay a subscription fee.
Continuous Integration and Continuous Deployment (CI/CD) - are closely
related methodologies designed to streamline and automate software development.
Together, they ensure that code changes are continuously tested, integrated, and
deployed to production environments, enabling teams to deliver updates more
rapidly, reliably, and with minimal manual intervention.
Deliverables - specific outputs, products, or results provided as part of the
contract or a contractual agreement.
End of life (EOL) - refers to the date after which a product will no longer be sold or
renewed (though still might receive some form of support, such as security
patches).
End of support (EOS) - refers to the date of complete cessation of all support
services for the product, including new patches, updates or fixes.
Infrastructure-as-a-code (IAC) - is an IT practice that involves managing and
provisioning computing infrastructure through machine-readable definition files,
rather than physical hardware configuration or interactive configuration tools.
IT ecosystem - is a network of interconnected technologies, software, hardware,
and services that work together to support an organization’s digital operations. It

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 2

includes applications, infrastructure, cloud services, and networks, all integrated to
ensure seamless communication, scalability, security, and efficiency.
IT solution continuity - involves a collection of strategies and plans focused on
maintaining an organization’s essential operations during and after disruptions. The
goal is to minimize downtime, limit financial losses, and safeguard the
organization’s reputation when faced with interruptions.
IT solutions - services, products and processes that use information technology to
solve business problems, improve operational efficiency, and enhance overall
performance. IT solutions are typically composed by various parts. For Example, the
codebase, CI/CD routines, documentation etc.
Open-ended - refers to components or features that are flexible, adaptable, and
capable of evolving over time to meet a wide range of needs and requirements.
Pre-processing - refers to the series of operations performed on raw data to
prepare it for further analysis and processing.
REST API service - is a type of web service that allows systems to communicate
over HTTP by accessing and manipulating resources using standard methods such
as GET, POST, PUT, and DELETE. RESTful APIs are stateless, meaning each request
from a client to the server must contain all the necessary information, and they
typically return data in formats like JSON or XML. This approach is widely used for
building scalable, lightweight web services and enabling seamless integration
between different systems.
Software development tools - applications, frameworks, and utilities that
software developers use to create, debug, maintain, or support software.
Software product - a collection of computer programs, procedures, and
documentation that performs a specific task or function or provides a
comprehensive solution to a particular problem.
Source code - a set of instructions and statements written by a programmer using
human-readable programming language. It is the original code written and saved in
files before being compiled or interpreted into executable programs. Source code
serves as the blueprint for creating software applications.
Workflow - systematic sequence of processes and activities.

4. Principles
The principles are grouped into 8 overarching IT architectural themes:

1. Architecture - foundational and design principles for sound infrastructure
and IT solution architecture.

2. Reproducibility - the overarching goal is to ensure that any deliverable in
the form of an IT solution may be reproduced given sufficient time.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 3

3. Reusability - the services and products provided through the EEA CLMS are
to be reused by the end users as the foundation of their further work.

4. Transparency - the EEA CLMS program is funded by the EU and supports its
community with data and products. These products are to be part of the
foundation for further work in the field and hence transparency is key to
ensuring that extended work can be carried out.

5. Maintainability - the EEA aims in the CLMS program to be able to provide
updated products when new data becomes available e.g. on yearly basis. To
reduce the time to market the principles of maintainability is to be followed.

6. Observability - IT solutions of the EEA CLMS must collect relevant metrics
for monitoring and assessment, to avoid disruptions and have predictable
operation of the solutions.

7. IT security - IT solutions of the EEA CLMS are utilized by multiple
stakeholders and thus IT security is paramount. This is especially critical for
the open-ended aspects such as the use of APIs and outward facing web
solutions.

8. Resilience - IT solutions of the EEA CLMS are designed to withstand and
recover from disruptions by remaining operational during unforeseen events.

Together, these principles guide design, development, and evolution of the IT
solutions in the EEA CLMS program. The principles should be periodically reviewed
and updated to ensure alignment with the latest technological advancements and
emerging best practices. This ongoing evaluation will help maintaining the
relevance, effectiveness, and security of the IT solutions.

4.1 Architecture
Foundational and design principles for maintaining sound infrastructure and IT
solution architecture. These sub-principles addresses best-practices and industry
standard design patterns.

Architecture 1: Client specific IT solutions should have a modular structure
What: Modular structure of client specific IT solutions is a requirement. This may

be achieved using e.g. microservice architecture
Why: A modular structure is sought to ensure further development, and updates

are possible. The possibility of substituting or adding modules in an IT
solution will increase the lifespan of a solution and increase scalability

Consequence: Modular architecture of IT solutions is a requisite
Example: If the client specific IT solution has, for Example, grown its user base since

the launch of the solution, then scaling up shall be possible at any time –
scaling containers, vertically (more CPUs, RAM) and horizontally (more VMs)

Architecture 2: IT solutions are to be Dockerized or similar

What: The use of container technology is encouraged

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 4

Architecture 2: IT solutions are to be Dockerized or similar
Why: Containerization is crucial for building scalable IT solutions and container

technology eases the work of moving IT solutions around the IT
infrastructure making deployment easier to automate

Consequence: IT solutions are to be deployed using Docker containers or similar
Example: Software components of the client specific IT solution shall be provided as

docker containers so that deployment is flexible with respect to hardware

Architecture 3: Client specific IT solutions must be able to interface with other IT

solutions
What: The IT deliverable must be able to be used in conjunction with other

deliverables to form a composite solution
Why: To make the most of the funds available the developed solutions should

form part of an IT ecosystem making up a whole
Consequence: IT deliverables must be equipped with documented APIs for interfacing with

other IT applications
Example: A client specific product, which can be used for extracting and manipulating

data, should be accessible programmatically through e.g. well documented
REST services

Architecture 4: IT solutions should be cloud agnostic

What: If the IT solution is built for cloud environments, measures must be taken to
make the solution cloud agnostic.

Why: Vendor lock-in must be avoided to remove vendor specific dependencies,
making the IT solution easier to migrate to a different cloud vendor

Consequence: IT solutions must minimize the usage of vendor specific functionality and
non-standardized infrastructure

Example: An IT solution that makes use of serverless functions should be built in a
way that allows for using another vendors serverless functionality with little
or no changes in case of migrating from one platform to another

4.2 Reproducibility
The overarching principle of reproducibility is further unfolded below in the following
sub-principles:

Reproducibility 1: Description of workflows must be provided
What: Deliverables which are a result of pre-processing of data must be provided

with a description of the workflow for the pre-processing
Why: To ensure that the deliverable can be re-produced, details must be provided

on how this can be achieved
Consequence: Descriptions of pre-processing workflow steps are to be provided with

deliverables. Ideally the workflows delivered as scripts or similar. At a
minimum documentation of how the workflows are to be set up is to be
provided

Example: A delivery that includes a web application, shall include description of the
build process, such as the compilation of source code, packaging of the
application, and deployment steps. This for instance could include details on

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 5

Reproducibility 1: Description of workflows must be provided
the specific versions of tools used (e.g. Node.js, Docker etc.)

Reproducibility 2: Data sources to be supplied with deliverables

What: IT solutions which utilize data sources must supply the data sources
Why: To ensure that the deliverable can be re-produced details are required on

data sources used along with any enrichment which have been applied to
the data source

Consequence: Data source location must be provided if data are publicly available. If data
are not accessible to the CLMS, the data are to be provided as part of the
deliverable

Example: If the software relies on a proprietary weather data API that is not publicly
accessible, the data, or at least a sample dataset, should be provided with
the delivery. If the API is publicly available, detailed instructions on how to
access it (e.g., API keys, endpoint URLs) must be included

Reproducibility 3: List of software used in development of IT solution to be provided

What: The software products which have been used in the development of the
software are to be listed as part of the deliverable

Why: To ensure that the IT solution can be further developed details are required
of the software components/products that were used in the development

Consequence: List of software development tools used in the production to be provided.
Further for client specific developments the source code must also be
provided

Example: A system consisting of several building blocks, such as User Interface,
backend, importer, and exporter modules, shall be provided with a list of
software development tools, used for production of these building blocks
and modules

Reproducibility 4: Automation tool/scripts used in the production of the IT solution

must be provided
What: IT solutions which include automation scripts/workflows in the development

must supply these scripts as part of the deliverable
Why: Automation scripts used in development are viewed as part of the

deliverable and are required for reproduction of the solution
Consequence: Automation scripts whether as stand-alone scripts or as a configuration of

standard/commercial software must be provided as part of the deliverable
Example: If the IT deliverable includes an automatic backup that generates full

backups in certain increments, then the automation scripts behind the
backup generation must be provided as part of the deliverable, so that they
could be recreated

Reproducibility 5: If a solution includes outcomes of pre-executed algorithms the

prerequisites for running the algorithms must be provided
What: To ensure reproducibility, the algorithms must be provided either as pseudo

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 6

Reproducibility 5: If a solution includes outcomes of pre-executed algorithms the
prerequisites for running the algorithms must be provided
code or as source code

Why: The foundation of the IT solution must be re-producible to ensure future
enhancements are possible say if new insights/data become available also
after the end of the contractual agreement

Consequence: Supplier must as part of the deliverable also detail any algorithms which
form the basis of the solution

Example: A spatial product, providing a detailed pan-European wall to wall 10-meter
spatial resolution raster product, that is based on a supervised classification
of satellite image time-series. The supplier must provide a detailed
description of the algorithm that was used for classifying satellite-imagery
time-series

4.3 Reusability
The principle of reusability is detailed in the following sub-principles:

Reusability 1: IT solutions should be open-ended equipped with APIs
What: IT solutions should be open-ended equipped with APIs through which

functionality or data key for the end user may be accessed
Why: To ensure that further work benefit from existing solutions it is paramount

that systems delivered are open ended. Future work can hereby utilize and
benefit from previous work. Delivered IT solutions should form part of the
overall IT ecosystem of the EEA CLMS program so that the “whole is greater
than the sum”

Consequence: IT solutions should be provided with APIs which access key functionality of
the IT solutions

Example: A webservice provided, which publishes geospatial data, has an API Rest
service, which grants users direct access to the data

Reusability 2: Scripts used in production must be delivered as part of IT solutions

What: Scripts should be delivered with code so that they may be used as
templates for the end user for further development

Why: Data, conditions, or requirements may change for an IT solution. To ensure
that such changes can be accommodated the underlying script must be
possible to modify to reflect and support such changes

Consequence: Scripts used in the productions form part of the final deliverable
Example: IT delivery, consisting of several building blocks, shall be provided with

scripts, included with the final delivery of the code, so that the end users of
the system could modify, expand, or adopt the building blocks/modules to
suit specific needs or add new features

4.4 Transparency
The CLMS is funded by the EU and supports its community with data and services.
As such, these products and services are to be part of the foundation for further
work in the field and accessible to the community. To support this, the principle of
transparency is detailed in the following subprinciples:

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 7

Transparency 1: Source code of client specific software to be supplied with IT
solution

What: Source code of client specific IT solution is supplied as part of the
deliverable and made publicly available under the EUPL-1.2 license 1

Why: To ensure transparency, it is essential to have clear insights into the client-
specific software. This enables efficient future developments and
modifications

Consequence: Source code of client specific software must be delivered with IT solution.
The source code shall include Docker recipes and scripts for building the
source code and be published under the EUPL-1.2 license

Example: Source code of all the components of the specific IT solution must be
delivered. Any updates or developments of the source code shall be
reflected in the EEA GitHub repository, which is the main repository of the
system. Moreover, the specific client IT solutions shall be published under
the EUPL-1.2 license, so the openness and transparency are ensured

Transparency 2: Inline documentation of the source code

What: Source code of client specific IT solution must be documented in-line
Why: To effectuate the handover from one developer to the next inline

documentation are to be included to guide the developer on the job
Consequence: Source code must have inline documentation. Inline code should be

formatted so that it may be easily extracted to generate online
documentation

Example: Source code of all the components of the IT solution must have inline
documentation. The documentation shall be structured, following common
conventions, and kept at a minimal, but comprehensive level

Transparency 3: Commercial software used in the production must be attainable by

the EEA or a third-party provider
What: Commercial software which are prerequisites must be attainable on

comparable terms. Such software is justified only if no open alternative
exists

Why: To ensure that further work may be carried out any prerequisites in the
form of software must be attainable by the EEA or a supplier

Consequence: Generally attainable commercial software used in production must be listed
when delivering an IT solution. Name of software, version, EOL and EOS to
be supplied

Example: An IT solution is deploying various components and the set-up of the virtual
machines that houses the components is done by means of an
infrastructure as-a-code-tool. All the capabilities of the infrastructure as-a-
code-tool, that require purchasing must be listed when delivering the IT
solution

4.5 Maintainability
The EEA aims in the CLMS program to be able to provide updated products when
new data becomes available. To reduce the time to market the principle of
maintainability is to be followed.
1 https://commission.europa.eu/content/european-union-public-licence_en

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 8

Maintainability 1: IT solutions are to be delivered on a principle of CI/CD
What: The launch of new releases of IT deliverables are to be configured and

managed so that new functionality is available as soon as possible. The
principle of CI/CD are to be adhered to

Why: Time to market is to be reduced through an approach of maintainability of
deployments as soon as possible

Consequence: IT deliverables are to be supplied with a dev-ops set-up which supports
CI/CD

Example: A delivered IT solution is organized with a test server environment
potentially a pre-production environment, used for quality assurance and
continuous development, so that deployment to production can be initiated
smoothly

Maintainability 2: Tests are to be organised so that they may be automated

What: Tests are to be structured so that they may be easily automated
Why: To ensure that the build and CI/CD process does not introduce bugs or

deployment failures, tests are to be automated so that they can
continuously be run to ensure the quality of the solution and its possible
enhancements

Consequence: Tests are to be delivered so that they can be automated
Example: The delivered solution has in the test phase run through a number of tests

e.g. unit tests and result verification tests. These will be the basis for
automated regression tests

Maintainability 3: Documentation of IT solutions are to be provided

What: Documentation of the developed IT solutions must be provided. The
requested documentation shall also be provided in quarto markdown format
on the dedicated EEA GitHub repository

Why: For the further use and improvements of the IT solution, technical
documentation is paramount.

Consequence: Documentation including but not limited to System Description Document
(SDD), System Deployment Document and Examples must be provided with
IT solution deliverables. The requested documents shall also be provided in
the quarto markdown format.

Example: An IT delivery, consisting of several building blocks, shall be provided with
SDD, user guidelines, and detailed documentation of system deployment,
including, but not limited to system and storage architecture, infrastructure
setup, provisioning, monitoring, disaster recovery, accessibility, scalability
options and performance. If requested, this documentation shall be
provided in quarto markdown format on the dedicated EEA GitHub
repository

Maintainability 4: Commercial software used in the development must be attainable

by the EEA or a third-party provider
What: Commercial software which are prerequisites must be attainable on

comparable terms. Such software is justified only if no open alternative
exists

Why: To ensure that further work may be carried out any prerequisites in the
 CLMS IT Architecture Principles and Implementation Guidelines

Page | 9

Maintainability 4: Commercial software used in the development must be attainable
by the EEA or a third-party provider
form of software must be attainable by the EEA or a supplier

Consequence: Generally attainable commercial software used in development or
production must be listed when delivering an IT solution. Name of software,
version, EOL and EOS to be supplied

Example: An IT solution using commercial components or tools, like PDF generator,
code analysis tools, data transformation software must be listed

Maintainability 5: Deployment and integration scripts of client specific software to be

supplied with IT solution
What: Deployment and integration scripts of client specific IT solution is supplied

as part of the deliverable
Why: To ensure transparency and efficient maintainability, it is essential to have

clear insights into the build and deploy processes of client-specific software.
This enables efficient future developments and modifications

Consequence: Scripts or playbooks and documentation for CI/CD (Continuous
Integration/Continuous Development), Docker recipes and build scripts must
be delivered

Example: Source code of all the components of the specific IT solution must be
delivered. Any updates or developments of the source code shall be
reflected in the EEA GitHub repository, which is the main repository of the
system. Moreover, the specific client IT solutions shall be published under
the EUPL-1.2 license, so the openness and transparency are ensured

4.6 Observability
IT solutions of the EEA CLMS must collect relevant metrics for monitoring and
assessment, to detect any issues and have predictable operation of the solutions.

Observability 1: IT solutions are to be regularly assessed
What: IT solutions are to be automatically monitored with a notification service,

and their performance routinely evaluated to ensure optimal functioning
Why: Regular assessments ensure that IT solutions can be maintained so as to

meet emerging needs, threats and technological advancements
Consequence: IT solution’s scalability, security, and overall performance are continuously

monitored and evaluated to address performance and security issues
Example: The delivered IT solution and its associated dependencies are regularly

assessed and evaluated. The evaluation process should also account for
advancements in technology and track developments to ensure the solution
remains relevant and effective

Observability 2: Continuous monitoring of metrics

What: IT solutions logs metrics on it’s components and containers for tracking
system performance and application health

Why: Continuous monitoring gives a data-driven insight of a solutions
components performance and health and provide the metrics for
automatically scaled solutions and self-recovering solutions

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 10

Observability 2: Continuous monitoring of metrics
Consequence: Components and containers in the solution logs relevant metrics to be

collected and monitored. As minimum liveliness and readiness should be
logged

Example: A software solution with an orhcestrating component and a worker
component use liveliness and readiness to monitor if the solution is healthy
and automatically scale the number of worker instances according to the
readiness metrics

4.7 IT security
The IT solutions of the CLMS program shall ensure system integrity against various
security threats, protection of the data, and maintenance of privacy. The following
sub-principals are to be followed:

IT security 1: Incorporate security considerations from the beginning of the
system development

What: Ensure security is integrated into all stages of the system development
lifecycle, from planning to deployment

Why: Early integration of security measures reduces vulnerabilities, lowers costs
associated with late-stage fixes, and ensures robust protection against
threats

Consequence: Threat modelling and security assessments need to be conducted from the
start, as well as allocation of resources for ongoing security reviews and
testing

Example: Standard aspects such as two factor authentication, protection against SQL
injection, encryption of sensitive data, no root users in containers, etc.

IT security 2: Compliance with relevant laws, regulations and industry standards

What: IT-solutions must adhere to legal requirements, industry standards, and
regulations e.g. EUDPR, ISO

Why: Compliance ensures legal and regulatory adherence, builds trust, protects
sensitive data, and mitigates risk of legal penalties and breaches

Consequence: IT deliverables need to incorporate robust security measures, include
documentation of compliance efforts, and ensure features and processes
aligned with legal and industry measures

Example: Data handling agreements must be in place, consideration of server location
in EU, etc.

IT security 3: Ensuring that users and systems have appropriate permissions

based on their roles and responsibilities
What: Implement role-based access control (RBAC) to manage user and system

permissions according to their roles
Why: It prevents unauthorized access, minimizes the risk of data breaches, and

ensures that users only have access to the information necessary for their
roles

Consequence: The provider will need to define clear roles and responsibilities, implement
RBAC policies, regularly review and update access controls

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 11

IT security 3: Ensuring that users and systems have appropriate permissions
based on their roles and responsibilities

Example: A delivered IT solution has role-based accesses, which ensures that only
Admin-Users are allowed to manage (add, edit, activate, inactivate) users
and organisations. Also, only administrator can view and edit any ingestion
and extraction within the system to support users if they need any help

IT security 4: Logging warnings and errors

What: The IT solution must log all errors, warnings and events with audit relevance
from every component to a file based storage

Why: In order to inspect system events and detect potential security incidents is
crucial for maintaining the system integrity and resilience. Log information
must not be revealed to the user, but must be stored internally.

Consequence: All components of an IT solution must log audit, error and warning
information coming from executing the code of the solution

Example: A user logs in to an application, trying to download a large dataset for
processing in the application, the system encounters some fatal errors with
the download. Login, user activity and technical error information and
severity is logged to a persistent file storage.

4.8 Resilience
Resilience 1: IT solution should have a disaster recovery plan

What: IT solution should have a well-defined process of restoring IT systems, data,
and operations following a disruption

Why: To ensure that the IT solution and data are recoverable after an unforeseen
event

Consequence: IT deliverables will be provided with well-prepared disaster recovery plan
that will ensure a rapid restoration of services and data integrity, and
minimize damage

Example: A delivered IT solution has a disaster recovery plan that includes backup
protocols, data replication, and recovery timelines

Resilience 2: Ensuring IT solution continuity

What: IT solution is designed and implemented in a way that ensures continuous
operation during a disruption

Why: To maintain critical operations with a minimal downtime, even when
confronted with unforeseen events

Consequence: IT deliverables are designed for high availability, incorporating redundancy
so that in case of a disruption/failure, restore service can immediately take
over, minimizing downtime and ensuring continuous operation

Example: In the event of a system failure or disruption of the delivered IT solution,
restore service automatically take over to maintain service continuity. For
instance, if a primary system goes down, a secondary system activates,
ensuring that users experience no downtime.

 CLMS IT Architecture Principles and Implementation Guidelines
Page | 12

	1. Preface
	2. Introduction
	3. Scope and key terms
	4. Principles
	4.1 Architecture
	4.2 Reproducibility
	4.3 Reusability
	4.4 Transparency
	4.5 Maintainability
	4.6 Observability
	4.7 IT security
	4.8 Resilience

